HP StoreOnce technology – job done!

I had the privilege to attend HP’s D2D workshop yesterday, thanks to the invitation of my old friend, Mr. CC Chung. He is Malaysia’s HP StorageWorks Division Country Manager

I am allowed to assess their D2D solution without fear or favour (I think) and the plush sling bag door gift has nothing to do with my assessment (what do you think? Ha, ha) So here goes.

I based my assessment from these criteria (something I picked up when I was mucking around with Data Domain for 3 months at MTech Security some years ago). The criteria are

  • Hash-based chunking granularity vs Single Instance Store (ala-EMC Centera)
  • Inline or post-processing
  • Source-based or target-based deduplication
  • Forward or reverse referencing (though it has little significance – for now)
  • Global or Local Deduplication

First of all, most people would ask about how well it dedupes and the technical guy’s answer would be “It depends …“. The sales would probably say “YMMV” (can anyone tell me what this acronym is for?). I believe the advertised rate is 20:1, pretty realistic because as we know in the deduplication world, the longer the data is retained, the higher the ratio can get. It also depends on the type of data to be deduped.

And of course, one of the participants (there are always skeptics) was bickering about how his customer was complaining that the deduplication ratio for a SQL database was lower than what was advertised. My take on this matter – Both the customer and the reseller are at fault! The customer happily took what the sales/pre-sales guy said in verbatim and expected fantastic results. The reseller was ill-equipped to know the D2D solution well and therefore, screwed the customer with realistic numbers for the wrong data type.

To me, as Justin (the HP Solution Architect) was presenting the HP D2D solution, I was ticking my check boxes for these criteria. And in my opinion, the HP D2D solution does the job. HP was telling the attendees that they will be surprised to know the end pricing for the D2D solution. I never got to know the figures and I never asked. But when compared to the king of the deduplication devices, Data Domain, it is likely to be lower.

So, here are the ticks to the HP D2D solution

  • In-line deduplication
  • Target-based (of course)
  • Hash-based chunking with variable length for deduplication granularity
  • Local Deduplication

They have several models ranging from the entry-level 2500 series to the 4100 and the 4300 series. After that, HP has another disparate deduplication solution meant for the higher end market called the VLS, and it was not presented in the workshop.

The D2D can be both a VTL and a NAS target dedupe device and the browser-based management GUI was simple and uncluttered. But what interested me was the HP StoreOnce technology, but I did not dig deeper into it. I found a nice video (below) to show a whiteboarding session for HP StoreOnce.

I promised to look deeper into it in a few days time. This week has been such a muck for me but overall, it has been turning up well at the end of the day.

Another thing that was interesting was its sparse indexing for the hashes and there were some dedupe vendors already doing the same thing. But, if you know me, I will research this for knowledge and benefit of all.

After the workshop, HP was so kind to give me an update about their Converged vision, how LeftHand, IBRIX, and 3PAR fit into their strategy and more importantly, their story to the storage market. I will speak more about this in the future. Of course, I will not reveal what’s in store for the future of the D2D solution, but all I can say is, I left the workshop feeling that the solution will do what it is supposed to, nothing more, nothing less. And I meant it in a good way.

I still reserve my opinions about HP because a lot of their storage business are still attached to the server side but hopefully with the upcoming P4000 and P6000 workshops coming up, my opinions may change a little.

All SSDs storage array? There’s more than meets the eye at Pure Storage

Wow, after an entire week off with the holidays, I am back and excited about the many happenings in the storage world.

One of the more prominent news was the announcement of Pure Storage launching its enterprise storage array build entirely with flash-based solid state drives. In addition to that, there were other start-ups who were also offering SSDs storage arrays. The likes of Nimbus Data, Avere, Violin Memory Systems all made the news as well as the grand daddy of solid state storage arrays, Texas Memory Systems.

The first thing that came to my mind was, “Wow, this is great because this will push down the $/GB of SSDs closer to the range of $/GB for spinning disks”. But then skepticism crept in and I thought, “Do we really need an entire enterprise storage array of SSDs? That’s going to cost the world”.

At the same time, we in the storage industry knows that no piece of data are alike. They can be large, small, random, sequential, accessed frequently or infrequently and so on. It is obviously better to tier the storage, using SSDs for Tier 0, 10K/15K RPM spinning HDDs for Tier 1, SATA for Tier 2 and perhaps tape for the archive tier. I was already tempted to write my pessimism on Pure Storage when something interesting caught my attention.

Besides the usual marketing jive of sub-milliseconds, predictable latency, green messaging, global inline deduplication and compression and built-in data integrity into its Purity Operating Environment (POE), I was very surprised to find the team behind Pure Storage. Here’s their line-up

  • Scott Dietzen, CEO – starting from principal technologist of Transarc (sold to IBM), principal architect of Web Logic (sold to BEA Systems), CTO of BEA (sold to Oracle), CTO of Zimbra (sold to Yahoo! and then to VMware)
  • John “Coz” Colgrove, Founder & CTO – Veritas Fellow, CTO of Symantec Data Management group, principal architect of Veritas Volume Manager (VxVM) and Veritas File System (VxFS) and holder of 70 patents
  • John Hayes, Founder & Chief Architect – formerly of  Yahoo! office of Chief Technologist
  • Bob Wood, VP of Engineering – Formerly NetApp’s VP of File System Engineering,
  • Michael Cornwell, Director of Technology & Strategy – formerly the lead technologist of Sun Microsystems’ Sun Storage F5100 Flash Array and also Quantum’s storage architect for their storage telemetry, VTL and DXi solutions
  • Ko Yamamoto, VP of System Engineering – previously NetApp’s director of platform engineering, Quantum DXi director of hardware engineering, and also key contributor to 4-generations of Tandem NonStop technology

In addition to that, there are 3 key individual investors worth mentioning

  • Diane Green – Founder of VMware and former CEO
  • Dr. Mendel Rosenblum – Founder and former Chief Scientist and creator of VMware
  • Frank Slootman – formerly CEO of Data Domain (acquired by EMC)

All these industry big guns are flocking to Pure Storage for a reason and it looks to me that Pure Storage ain’t your ordinary, run-of-the-mill enterprise storage company. There’s definitely more than meet the eye.

On top of the enterprise storage array platform is Pure Storage’s Purity Operating Environment (POE). POE focuses on 3 key storage services which are

  • High Performance Data Reduction
  • Mission Critical Reliability
  • Predictable Sub-millisecond Performance

After going through the deep-dive videos by Pure Storage’s CTO, John Colgrove, they are very much banking the success of their solution around SSDs. Everything that they have done is based on SSDs.  For example, in order to achieve a larger capacity as well as a much cheaper $/GB, the data reduction techniques in global deduplication, high compression and also fine grained thin provision of 512 bytes are used. By trading off IOPS (which SSDs have plenty since they are several times faster than conventional spinning disks), a larger usable capacity is achieved.

In their RAID 3D, they also incorporated several high reliability techniques and data integrity algorithm that are specifically for SSDs. One note that was mentioned was that traditional RAID and especially the parity-based RAID levels were designed in the beginning to protect against an entire device failure. However, in SSDs, the failure does not necessarily occur in the entire device. Because of the way SSDs are built, the failure hotspots tend to happen at the much more granular bit level of the SSDs. The erase-then-write techniques that are inherent in NAND Flash SSDs causes the bit error rate (BER) of the SSD device to go up as the device ages. Therefore, it is more likely to get a read/write error from within the SSDs memory itself rather than having the entire SSD device failing. Pure Storage RAID 3D is meant to address such occurrences of bit errors.

I spoke a bit of storage tiering earlier in this article because every corporation employs storage tiering to be financially responsible. However, John Colgrove’s argument was why tier the storage when there’s plentiful of IOPS and the $/GB is comparable to spinning disks. That is true is when the $/GB of SSDs can match the $/GB of spinning disks. Factors we must also taken into account is the rack-space savings using the smaller profile disks of SSDs, the power-savings costs of SSDs versus conventional HDD-based enterprise storage arrays. In its entirety, there are strong indications that the $/GB of SSD-based systems to match or perhaps lower the $/GB of HDD-based systems. And since the IOPS requirement levels of present-day applications have not demanded super-high IOPS and multi-core processing is cheap, there’s plenty of head-room for Pure Storage and other similar enterprise storage array companies to grow.

The tides are changing for the storage industry and it is good to see a start-up like Pure Storage boldly coming forth to announce their backing for SSDs. It’s good for the consumer and good for the industry. But more importantly, they are driving innovations to rethink of how we build storage arrays. I am looking forward to more things to come.