Did Cloud Kill LTFS?

I like LTFS (Linear Tape File System). I was hoping it would take off but it has not. And looking at its future, its significance is becoming less and less relevant. I look if Cloud has been a factor in the possible demise of LTFS in the next few years.

What is LTFS?

In a nutshell, Linear Tape File System makes LTO tapes look like a disk with a file system. It takes a tape and divides it into 2 partitions:

  • Index Partition (XML Index Schema with file names, metadata and attributes details)
  • Data Partition (where the data resides)

Diagram from https://www.snia.org/sites/default/orig/SDC2011/presentations/tuesday/DavidPease_LinearTape_File_System.pdf

It has a File System module which is implemented in supported OS of Unix/Linux, MacOS and Windows. And the mounted file system “tape partition” shows up as a drive or device.

Assassination attempts

There were many attempts to kill off tapes and so far, none has been successful.

Among the “tape-killer” technologies, I think the most prominent one is the VTL (Virtual Tape Library). There were many VTLs I encountered during my days in mid-2000s. NetApp had Alacritus and EMC had Clariion Disk Libraries. There were also IBM ProtecTIER, FalconStor VTL (which is still selling today) among others and Sepaton (read in reverse is “No Tapes’). Sepaton was acquired by Hitachi Data Systems several years back. Continue reading

Scaling new HPC with Composable Architecture

[Disclosure: I was invited by Dell Technologies as a delegate to their Dell Technologies World 2019 Conference from Apr 29-May 1, 2019 in the Las Vegas USA. Tech Field Day Extra was an included activity as part of the Dell Technologies World. My expenses, travel, accommodation and conference fees were covered by Dell Technologies, the organizer and I was not obligated to blog or promote their technologies presented at this event. The content of this blog is of my own opinions and views]

Deep Learning, Neural Networks, Machine Learning and subsequently Artificial Intelligence (AI) are the new generation of applications and workloads to the commercial HPC systems. Different from the traditional, more scientific and engineering HPC workloads, I have written about the new dawn of supercomputing and the attractive posture of commercial HPC.

Don’t be idle

From the business perspective, the investment of HPC systems is high most of the time, and justifying it to the executives and the investors is not easy. Therefore, it is critical to keep feeding the HPC systems and significantly minimize the idle times for compute, GPUs, network and storage.

However, almost all HPC systems today are inflexible. Once assigned to a project, the resources pretty much stay with the project, even when the workload processing of the project is idle and waiting. Of course, we have to bear in mind that not all resources are fully abstracted, virtualized and software-defined whereby you can carve out pieces of the hardware and deliver a percentage of that resource. Case in point is the CPU, where you cannot assign certain clock cycles of CPU to one project and another half to the other. The technology isn’t there yet. Certain resources like GPU is going down the path of Virtual GPU, and into the realm of resource disaggregation. Eventually, all resources of the HPC systems – CPU, memory, FPGA, GPU, PCIe channels, NVMe paths, IOPS, bandwidth, burst buffers etc – should be disaggregated and pooled for disparate applications and workloads based on demands of usage, time and performance.

Hence we are beginning to see the disaggregated HPC systems resources composed and built up the meet the diverse mix and needs of HPC applications and workloads. This is even more acute when a AI project might grow cold, but the training of AL/ML/DL workloads continues to stay hot

Liqid the early leader in Composable Architecture

Continue reading

Connecting ideas and people with Dell Influencers

[Disclosure: I was invited by Dell Technologies as a delegate to their Dell Technologies World 2019 Conference from Apr 29-May 1, 2019 in the Las Vegas USA. My expenses, travel, accommodation and conference fees were covered by Dell Technologies, the organizer and I was not obligated to blog or promote their technologies presented at this event. The content of this blog is of my own opinions and views]

I just got home from Vegas yesterday after attending my 2nd Dell Technologies World as one of the Dell Luminaries. The conference was definitely a bigger one than the one last year, with more than 15,000 attendees. And there was a frenzy of announcements, from Dell Technologies Cloud to new infrastructure solutions, and more. The big one for me, obviously was Azure VMware Solutions officiated by Microsoft CEO Satya Nadella and VMware CEO Pat Gelsinger, with Michael Dell bringing together the union. I blogged about Dell jumping into the cloud in a big way.

AI Tweetup

In the razzmatazz, the most memorable moments were one of the Tweetups organized by Dr. Konstanze Alex (Konnie) and her team, and Tech Field Day Extra.

Tweetup was alien to me. I didn’t know how the concept work and I did google tweetup before that. There were a few tweetups on the topics of data protection and 5G, but the one that stood out for me was the AI tweetup.

No alt text provided for this image

Continue reading

Dell go big with Cloud

[Disclaimer: I have been invited by Dell Technologies as a delegate to their Dell Technologies World 2019 Conference from Apr 29-May 1, 2019 in the Las Vegas USA. My expenses, travel and accommodation are covered by Dell Technologies, the organizer and I am not obligated to blog or promote their technologies presented at this event. The content of this blog is of my own opinions and views]

Talk about big. Dell Technologies just went big with the Cloud.

The Microsoft Factor

Day 1 of Dell Technologies World 2019 (DTW19) started with a big surprise to many, including yours truly when Michael Dell, together with Pat Gelsinger invited Microsoft CEO, Satya Nadella on stage.

There was nothing new about Microsoft working with Dell Technologies. Both have been great partners since the PC days, but when they announced Azure VMware Solutions to the 15,000+ attendees of the conference, there was a second of disbelief, followed by an ovation of euphoria.

VMware solutions will run native on Microsoft Azure Cloud. The spread of vSphere, VSAN, vCenter, NSX-T and VMware tools and environment will run on Azure Bare Metal Infrastructure at multiple Azure locations. How big is that. Continue reading

Lift and Shift Begone!

I am excited. New technologies are bringing the data (and storage) closer to processing and compute than ever before. I believe the “Lift and Shift” way would be a thing of the past … soon.

Data is heavy

Moving data across the network is painful. Moving data across distributed networks is even more painful. To compile the recent first image of a black hole, an amount of 5PB or more had to shipped for central processing. If this was moved over a 10 Gigabit network, it would have taken weeks.

Furthermore, data has dependencies. Snapshots, clones, and other data relationships with applications and processes render data inert, weighing it down like an anchor of a ship.

When I first started in the industry more than 25 years ago, Direct Attached Storage (DAS) was the dominating storage platform. I had a bulky Sun MultiDisk Pack connected via Fast SCSI to my SPARCstation 2 (diagram below):

Then I was assigned as the implementation engineer for Hock Hua Bank (now defunct) retail banking project in their Sibu HQ in East Malaysia. It was the first Sun SPARCstorage 1000 (photo below), running a direct attached Fibre Channel 0.25 Gbps FCAL (Fibre Channel Arbitrated Loop). It was the cusp of the birth of SAN (Storage Area Network).

Photo from https://www.cca.org/dave/tech/sys5/

The proliferation of SAN over the next 2 decades pushed DAS into obscurity, until SAS (Serial Attached SCSI) came about. Added to the mix was the prominence of Cloud Storage. But on-premises storage and Cloud Storage didn’t always come together. There was always a valley between the 2, until the public clouds gained a stronger foothold in the minds of IT and businesses. Today, both on-premises storage and cloud storage are slowly cosying as one Data Singularity, thanks to vision and conceptualization of data fabrics. NetApp was an early proponent of the Data Fabric concept 4 years ago. Continue reading

Is AI my friend?

I am sorry, Dave …

Let’s start this story with 2 supposed friends – Dave and Hal.

How do we become friends?

We have friends and we have enemies. We become friends when trust is established. Trust is established when there is an unsaid pact, a silent agreement that I can rely on you to keep my secrets private. I will know full well that you will protect my personal details with a strong conviction. Your decisions and your actions towards me are in my best interest, unbiased and would benefit both me and you.

I feel secure with you.

AI is my friend

When the walls of uncertainty and falsehood are broken down, we trust our friends more and more. We share deeper secrets with our friends when we believe that our privacy and safety are safeguarded and protected. We know well that we can rely on them and their decisions and actions on us are reliable and unbiased.

AI, can I count on you to protect my privacy and give me security that my personal data is not abused in the hands of the privileged few?

AI, can I rely on you to be ethical, unbiased and give me the confidence that your decisions and actions are for the benefit and the good of me, myself and I?

My AI friends (maybe)

As I have said before, I am not a skeptic. When there is plenty of relevant, unbiased data fed into the algorithms of AI, the decisions are fair. People accept these AI decisions when the degree of accuracy is very close to the Truth. The higher the accuracy, the greater the Truth. The greater the Truth, the more confident people are towards the AI system.

Here are some AI “friends” in the news:

But we have to careful here as well. Accuracy can be subjective, paradoxical and enigmatic. When ethics are violated, we terminate the friendship and we reject the “friend”. We categorically label him or her as an enemy. We constantly have to check, just like we might, once in a while, investigate on our friends too.

In Conclusion

AI, can we be friends now?

[Apology: sorry about the Cyberdyne link 😉 ]

[This blog was posted in LinkedIn on Apr 19th 2019]

Figuring out storage for Kubernetes and containers

Oops! I forgot about you!

To me, containers and container orchestration (CO) engines such as Kubernetes, Mesos, Docker Swarm are fantastic. They scale effortlessly and are truly designed for cloud native applications (CNA).

But one thing irks me. Storage management for containers and COs. It was as if when they designed and constructed containers and the containers orchestration (CO) engines, they forgot about the considerations of storage and storage management. At least the persistent part of storage.

Over a year ago, I was in two minds about persistent storage, especially when it comes to the transient nature of microservices which was so prevalent and were inundating the cloud native applications landscape. I was searching for answers in my blog. The decentralization of microservices in containers means mass deployment at the edge, but to have the pre-processed and post-processed data stick to the persistent storage at the edge device is a challenge. The operative word here is “STICK”.

Two different worlds

Containers were initially designed and built for lightweight applications such as microservices. The runtime, libraries, configuration files and dependencies are all in one package. They were meant to do simple tasks quickly and scales to thousands easily. They could be brought up and brought down in little time and did not have to bother about the persistent data stored by the host. The state of the containers were also not important to the application tasks at hand.

Today containers like Docker have matured to run enterprise applications and the state of the container is important. The applications must know the state and the health of the container. The container could be in online mode, online but not accepting data mode, suspended mode, paused mode, interrupted mode, quiesced mode or halted mode. Each mode or state of the container is important to the running applications and the container can easily brought up or down in an instance of a command. The stateful nature of the containers and applications is critical for the business. The same situation applies to container orchestration engines such as Kubernetes.

Container and Kubernetes Storage

Docker provides 3 methods to local storage. In the diagram below, it describes:

Continue reading

Data Privacy First before AI Framework

A few days ago, I discovered that Malaysia already had plans for a National Artificial Intelligence (AI) Framework. It is led by Malaysia Digital Economy Corporation (MDEC) and it will be ready by the end of 2019. A Google search revealed a lot news and announcements, with a few dating back to 2017, but little information of the framework itself. Then again, Malaysia likes to take the “father knows best” approach, and assumes that what it is doing shouldn’t be questioned (much). I will leave this part as it is, because perhaps the details of the framework is under the OSA (Official Secrets Act).

Are we AI responsible or are we responsible for AI?

But I would like to highlight the data privacy part that is likely to figure strongly in the AI Framework, because the ethical use of AI is paramount. It will have economical, social and political impact on Malaysians, and everybody else too. I have written a few articles on LinkedIn about ethics, data privacy, data responsibility, impact of AI. You can read about them in the links below:

I may sound like a skeptic of AI. I am not. I believe AI will benefit mankind, and bring far reaching developments to the society as a whole. But we have to careful and this is my MAIN concern when I voice about AI. I continue to question the human ethics and the human biases that go into the algorithms that define AI. This has always been the crux of my gripes, my concerns, my skepticism of everything we call AI. I am not against AI but I am against the human flaws that shape the algorithms of AI.

Everything is a Sheep (or a Giraffe)

A funny story was shared with me last year. It was about Microsoft Azure computer vision algorithm in recognizing visuals in photos. Apparently the algorithm of the Microsoft Azure’s neural network was fed with some overzealous data of sheep (or giraffes), and the AI system started to point out that every spot that it “saw” was either a sheep, or any vertical long ones was a giraffe.

In the photo below, there were a bunch of sheep on a tree. Check out the tags/comments in the red rectangle published by the AI neural network software below and see how both Microsoft Azure and NeutralTalk2 “saw” in the photo. You can read more about the funny story here.

This proves my point that if you feed the learning system and the AI behind it with biased and flawed information, the result can be funny (in this case here) or disastrous. Continue reading

We got to keep more data

Guess which airport has won the most awards in the annual Skytrax list? Guess which airport won 480 awards since its opening in 1981? Guess how this airport did it?

Data Analytics gives the competive edge.

Serving and servicing more than 65 million passengers and travellers in 2018, and growing, Changi Airport Singapore sets a very high level customer service. And it does it with the help of technology, something they call Smart (Service Management through Analytics and Resource Transformation) Airport. In an ultra competitive and cut-throat airline business, the deep integration of customer-centric services and the ultimate traveller’s experience are crucial to the survival and growth of airlines. And it has definitely helped Singapore Airlines to be the world’s best airlines in 2018, its 4th win.

To achieve that, Changi Airport relies on technology and lots of relevant data for deep insights on how to serve its customers better. The details are well described in this old news article.

Keep More Relevant Data for Greater Insights

When I mean more data, I do not mean every single piece of data. Data has to be relevant to be useful.

How do we get more insights? How can we teach systems to learn? How to we develop artificial intelligence systems? By having more relevant data feeding into data analytics systems, machine learning and such.

As such, a simple framework for building from the data ingestion, to data repositories to outcomes such as artificial intelligence, predictive and recommendations systems, automation and new data insights isn’t difficult to understand. The diagram below is a high level overview of what I work with most of the time. Continue reading

Malaysia, when will you take data privacy seriously?

It is sad. I get about 5-10 silly calls a week and a bunch of nonsense messages in my WhatsApp text and SMS. They waste my time, and it has been going on for years. Even worse is that my private details are out there, exposed and likely be abused too.

Once I got a call from a municipal attorney in the state of Kelantan that I have unpaid summons of several thousand ringgit. They have phone number, my IC number and they threatened to send me a note to arrest me if I didn’t pay up. The thing is, I have never been to Kelantan and I challenged them to send the attorney letter to my home address. The guy on the phone hung up.

In this age where digital information is there at our finger tips, the private details of victims are out there, easily used for unsavoury gains. And we as Malaysians should not shrug our shoulders and not assume that everything is like that, as if it is a Malaysia way of life. That apathy, our state of indifference, should be wiped out from our attitude. We should question the government, the agencies of why is our privacy not protected?

We have the Personal Data Protection Act, ratified in 2010. I don’t know the details of the act, but in its most basic form, don’t you think our private details should at least be protected from the telemarketers calling us selling their personal loans, time share travel suites, private massage (with benefits?) and other silly stuff? How can an act, as a law, be so toothless? Why bother drafting the act, and going through multiple iterations, I would suppose, and making it a law, and yet remain so unworthy to be called a act? Continue reading