FlashForward to Beyond

The flash frenzy has reached its zenith in 2016. We now no longer are interested in listening to storage technology vendors touting the power of solid state storage (NAND Flash included) over spinning drives.

The capacity of 3D NAND Flash SSDs has reached a whopping 15.3TB (that is even bigger than the 12TB 7200RPM HDDs of today), and with deduplication and compression, the storage efficiency has reached a conservative 4:1 or 5:1. Effective capacity of most mid-end storage arrays can easily reach 1-2 Petabytes.

And flash and hybrid platforms have reached maturity in these few short years. So what is next?

The landscape has obviously changed. The performance landscape, the capacity landscape and all related to the storage data points have changed. And the speed of SSDs together with the up-and-coming NVMe and NVDIMM technology in new storage array controllers are also shifting the data bottlenecks to another part of the architecture. The development of I/O communications and interfaces has to change as well, to take advantage of the asynchronous I/Os in storage tiering and caching using NAND Flash.

With this mature and well understood landscape, it is time to take Flash to the next level. This next level comes in the form of an exciting end-user conference in Singapore on 25th April 2017. It is called FlashForward.

The 2016 FlashForward event in Europe has already garnered great support from the cream of the storage technologists around the world, and had fantastic feedbacks from the end-user attendees. That FlashForward event has also seen the birth of an international business and technology exchange in its inaugural introduction.  Yes, it is time to learn from the field experts, and it is time to build on the Flash Platform for new Data Services.

From the sponsorship package brochure I have received, it is definitely an event not to be missed.

The FlashForward Conference in Singapore is exquisitely procured by Evito Ltd, under the stewardship of Mr. Paul Talbut. Paul is a very seasoned veteran in the global circuit as an SNIA director of several initiatives. He has been immensely involved in the development of several SNIA chapters around the world, including South Asia, Malaysia, India, China, and even Brazil. He also leads by example with the SNIA Global Steering Committee (GSC); he is the SNIA Global Education Director and at one time, SNIA DPCO (Data Protection & Capacity Optimization) global proctor.

I have had the honour working with Paul for almost 8 years now, and I am sure he will lead the FlashForward Conference with valuable insights and experiences.

This is probably the greatest period for the industry and end users to get involved in the FlashForward Conference. For one, it is endorsed by SNIA, the vendor-neutral association which has been the growth beacon of the storage networking industry.

Secondly, it is the perfect opportunity for technology vendors to build their mindshare with end users and customers. And with the endorsement of the independent field experts and technology practitioners, end users would have a field day garnering approvals for their decisions, as well as learning the best practices to build upon the Flash technology they have implemented in their data center space.

The sponsorship packages are listed below, and I do encourage technology vendors, especially the All-Flash vendors to use the FlashForward conference as a platform to build their mindshare, and most of all, their branding. Continue reading

Oops, excuse me but your silo is showing

It is the morning that the SNIA Global Steering Committee reporting session is starting soon. I am in the office extremely early waiting for my turn to share the happenings in SNIA Malaysia.

And of late, I have been getting a lot of calls to catch up on hot technologies, notably All Flash Storage arrays and hyper-converged infrastructure. Even though I am now working for Interica, a company that focuses on Oil & Gas exploration and production software, my free coffee sessions with folks from the IT side have not diminished. And I recalled a week back in mid-March where I had coffee overdose!

Flash storage and hyperconvergence are HOT! Despite the hypes and frenzies of both flash storage and hyperconvergence, I still believe that integrating either or, or both, still have an effect that many IT managers overlook. The effect is a data silo.

Continue reading

SSDs rising in the flood crisis

The Thailand flood last year spelled disaster to the storage industry. We have already seen several big boys in the likes of HP, EMC and NetApp announcing the rise of prices because of the flood.

NetApp’s announcement is here; EMC is here; and HP is here, if you want to read about it. Below is a nice and courteous EMC letter to their customers.

But the Chinese character of “crisis” (below) also spells opportunities; opportunities for Solid State Drives (SSDs) that is.

For those of us close to the ground, the market for spinning hard disk drives (HDDs) has certainly been challenging for the past few months, especially for smaller system providers like us. Without the leveraging powers of the bigger boys, we practically had to beg to buy HDDs, not to mention the fact that the price has practically doubled.

Before the Thailand flood crisis, the GB/$ of a 2TB HDD was 0.325 Malaysian ringgit per GB. That’s about 33 cents. Today, the price is about 55 cents per GB. In comparison, at least from my experience, the GB/$ of SSDs has gone down from $5.83 to $4.99.

I know some of you might pooh-pooh the price difference between a 2TB SATA/SAS and a 120GB SSD, partly because the SSD seems so expensive. But when you consider that doing the math, the SSDs is likely to be 50x faster (at worst average) and 200x faster (at best average) for applications requiring IOPS, this could mean that transactional applications are likely to be completed an average of 100x faster, with better response time, with lower latency. This will have a domino effect on other related applications, making the entire service request performing and completing faster. When we put a price to the transactional hours, for example $10/hour work, then we can see the cost savings coming from using SSDs in the storage.

Interestingly, a friend of mine asked me about the prominence of an all SSDs storage systems. I have written about all SSDs systems in the past, and also did a high overview of Pure Storage some time back. And a very interesting fact I recalled was these systems having massive amount of IOPS. Having plenty of IOPS helps because you do away with Automated Storage Tiering (AST) because you don’t have to tier your data, and you don’t have to pay for such a feature.

Yes, all-SSDs pure-play storage systems are gaining prominence and it’s time to take notice. Nimbus beat NetApp and HP 3PAR last year to win eBay with an all SSDs storage solution and other players such as Violin Memory Systems, Pure Storage, SolidFire and of course, Texas Memory Systems (aka RAMSAN). And they are attracting big names into their management portfolios and getting VC dollars of course.

The Thailand flood aftermath will probably take 6 months or more to return to its previous production capacity prior to the crisis and SSDs can take this window of opportunity in the crisis to surge ahead. And if this flood is going to be an annual thing for Thailand (God bless Thailand), HDD market is going to have a perennial problem. And SSDs is going to rise even faster.

 

Does all SSDs make sense?

I have been receiving a lot of email updates from Texas Memory Systems for many months now. I am a subscriber to their updates and Texas Memory System is the grand daddy of flash and DRAM-based storage systems. They are not cheap but they are blazingly fast.

Lately, more and more vendors have been coming out with all SSDs storage arrays. Startups such Pure Storage, Violin Memory and Nimbus Data Systems have been pushing the envelope selling all SSDs storage arrays. A few days ago, EMC also announced their all SSDs storage array. As quoted, the new EMC VNX5500-F utilizes 2.5-in, single-level cell (SLC) NAND flash drives to 10 times the performance of the hard-drive based VNX arrays. And that is important because EMC has just become one of the earliest big gorillas to jump into the band wagon.

But does it make sense? Can one justify to invest in an all SSDs storage array?

At this point, especially in this part of the world, I predict that not many IT managers are willing to put their head on the chopping board and invest in an all SSDs storage array. They would become guinea pigs for a very expensive exercise and the state of the economy is not helping. Therefore the automatic storage tiering (AST) might stick better than having an all SSDs storage array. The cautious and prudent approach is less risky as I have mentioned in a past blog.

I wrote about Pure Storage in a previous blog and the notion that SSDs will offer plenty of IOPS and throughput. If the performance gain translates into higher productivity and getting the job done quicker, then I am all for SSDs. In fact, given the extra performance numbers

There is no denying that the fact that the industry is moving towards SSDs and it makes sense. That day will come in the near future but not now for customers in these part of the world.

All SSDs storage array? There’s more than meets the eye at Pure Storage

Wow, after an entire week off with the holidays, I am back and excited about the many happenings in the storage world.

One of the more prominent news was the announcement of Pure Storage launching its enterprise storage array build entirely with flash-based solid state drives. In addition to that, there were other start-ups who were also offering SSDs storage arrays. The likes of Nimbus Data, Avere, Violin Memory Systems all made the news as well as the grand daddy of solid state storage arrays, Texas Memory Systems.

The first thing that came to my mind was, “Wow, this is great because this will push down the $/GB of SSDs closer to the range of $/GB for spinning disks”. But then skepticism crept in and I thought, “Do we really need an entire enterprise storage array of SSDs? That’s going to cost the world”.

At the same time, we in the storage industry knows that no piece of data are alike. They can be large, small, random, sequential, accessed frequently or infrequently and so on. It is obviously better to tier the storage, using SSDs for Tier 0, 10K/15K RPM spinning HDDs for Tier 1, SATA for Tier 2 and perhaps tape for the archive tier. I was already tempted to write my pessimism on Pure Storage when something interesting caught my attention.

Besides the usual marketing jive of sub-milliseconds, predictable latency, green messaging, global inline deduplication and compression and built-in data integrity into its Purity Operating Environment (POE), I was very surprised to find the team behind Pure Storage. Here’s their line-up

  • Scott Dietzen, CEO – starting from principal technologist of Transarc (sold to IBM), principal architect of Web Logic (sold to BEA Systems), CTO of BEA (sold to Oracle), CTO of Zimbra (sold to Yahoo! and then to VMware)
  • John “Coz” Colgrove, Founder & CTO – Veritas Fellow, CTO of Symantec Data Management group, principal architect of Veritas Volume Manager (VxVM) and Veritas File System (VxFS) and holder of 70 patents
  • John Hayes, Founder & Chief Architect – formerly of  Yahoo! office of Chief Technologist
  • Bob Wood, VP of Engineering – Formerly NetApp’s VP of File System Engineering,
  • Michael Cornwell, Director of Technology & Strategy – formerly the lead technologist of Sun Microsystems’ Sun Storage F5100 Flash Array and also Quantum’s storage architect for their storage telemetry, VTL and DXi solutions
  • Ko Yamamoto, VP of System Engineering – previously NetApp’s director of platform engineering, Quantum DXi director of hardware engineering, and also key contributor to 4-generations of Tandem NonStop technology

In addition to that, there are 3 key individual investors worth mentioning

  • Diane Green – Founder of VMware and former CEO
  • Dr. Mendel Rosenblum – Founder and former Chief Scientist and creator of VMware
  • Frank Slootman – formerly CEO of Data Domain (acquired by EMC)

All these industry big guns are flocking to Pure Storage for a reason and it looks to me that Pure Storage ain’t your ordinary, run-of-the-mill enterprise storage company. There’s definitely more than meet the eye.

On top of the enterprise storage array platform is Pure Storage’s Purity Operating Environment (POE). POE focuses on 3 key storage services which are

  • High Performance Data Reduction
  • Mission Critical Reliability
  • Predictable Sub-millisecond Performance

After going through the deep-dive videos by Pure Storage’s CTO, John Colgrove, they are very much banking the success of their solution around SSDs. Everything that they have done is based on SSDs.  For example, in order to achieve a larger capacity as well as a much cheaper $/GB, the data reduction techniques in global deduplication, high compression and also fine grained thin provision of 512 bytes are used. By trading off IOPS (which SSDs have plenty since they are several times faster than conventional spinning disks), a larger usable capacity is achieved.

In their RAID 3D, they also incorporated several high reliability techniques and data integrity algorithm that are specifically for SSDs. One note that was mentioned was that traditional RAID and especially the parity-based RAID levels were designed in the beginning to protect against an entire device failure. However, in SSDs, the failure does not necessarily occur in the entire device. Because of the way SSDs are built, the failure hotspots tend to happen at the much more granular bit level of the SSDs. The erase-then-write techniques that are inherent in NAND Flash SSDs causes the bit error rate (BER) of the SSD device to go up as the device ages. Therefore, it is more likely to get a read/write error from within the SSDs memory itself rather than having the entire SSD device failing. Pure Storage RAID 3D is meant to address such occurrences of bit errors.

I spoke a bit of storage tiering earlier in this article because every corporation employs storage tiering to be financially responsible. However, John Colgrove’s argument was why tier the storage when there’s plentiful of IOPS and the $/GB is comparable to spinning disks. That is true is when the $/GB of SSDs can match the $/GB of spinning disks. Factors we must also taken into account is the rack-space savings using the smaller profile disks of SSDs, the power-savings costs of SSDs versus conventional HDD-based enterprise storage arrays. In its entirety, there are strong indications that the $/GB of SSD-based systems to match or perhaps lower the $/GB of HDD-based systems. And since the IOPS requirement levels of present-day applications have not demanded super-high IOPS and multi-core processing is cheap, there’s plenty of head-room for Pure Storage and other similar enterprise storage array companies to grow.

The tides are changing for the storage industry and it is good to see a start-up like Pure Storage boldly coming forth to announce their backing for SSDs. It’s good for the consumer and good for the industry. But more importantly, they are driving innovations to rethink of how we build storage arrays. I am looking forward to more things to come.