A FreeNAS Compression Tale

David vs Goliath Credit: Miguel Robledo of https://www.artstation.com/miguel_robledo

David vs Goliath

It was an underdog tale worthy of the biblical book of Samuel. When I first caught wind of how FreeNAS™ compression prowess was going against NetApp® compression and deduplication in one use case, I had to find out more. And the results in this use case was quite impressive considering that FreeNAS™ (now known as TrueNAS® CORE) is the free, open source storage operating system and NetApp® Data ONTAP, is the industry leading, enterprise, “king of the hill” storage data management software.

Certainly a David vs Goliath story.

Compression in FreeNAS

Ah, Compression! That technology that is often hidden, hardly seen and often forgotten.

Compression is a feature within FreeNAS™ that seldom gets the attention. It works, and certainly is a mature form of data footprint reduction (DFR) technology, along with data deduplication. It is switched on by default, and is the setting when creating a dataset, as shown below:

Dataset creation with Compression (lz4) turned on

The default compression algorithm is lz4 which is fast but poor in compression ratio compared to gzip and bzip2. However, lz4 uses less CPU cycles to perform its compression and decompression processing, and thus the impact on FreeNAS™ and TrueNAS® is very low.

NetApp® ONTAP, if I am not wrong, uses lzopro as default – a commercial and optimized version of the open source LZO compression library. In addition, NetApp also has their data deduplication technology as well, something OpenZFS has to improve upon in the future.

The DFR report

This brings us to the use case at one of iXsystems™ customers in Taiwan. The data to be reduced are mostly log files at the end user, and the version of FreeNAS™ is 11.2u7. There are, of course, many factors that affect the data reduction ratio, but in this case of 4 scenarios,  the end user has been running this in production for over 2 months. The results:

FreeNAS vs NetApp Data Footprint Reduction

In 2 of the 4 scenarios, FreeNAS™ performed admirably with just the default lz4 compression alone, compared to NetApp® which was running both their inline compression and deduplication.

The intention to post this report is not to show that FreeNAS™ is better in every case. It won’t be, and there are superior data footprint reduction tech out there which can outperform it. But I would expect potential and existing end users to leverage on the compression capability of FreeNAS™ which is getting better all the time.

A better compression algorithm

Followers of OpenZFS are aware of the changing of times with OpenZFS version 2.0. One exciting update is the introduction of the zstd compression algorithm into OpenZFS late last year, and is already in TrueNAS® CORE and Enterprise version 12.x.

What is zstd? zstd is a fast compression algorithm that aims to be as efficient (or better) than gzip, but with better speed closer to lz4, relatively. For a long time, the gzip compression algorithm, from levels 1-9, has been serving very good compression ratio compared to many compression algorithms, lz4 included.

However, the efficiency came at a higher processing price and thus took a longer time. At the other end, lz4 is fast and lightweight, but its reduction ratio efficiency is very poor. zstd intends to be the in-between of gzip and lz4. In the latest results published by Facebook’s github page,

zstd performance benchmark against other compression algorithms

For comparison, zstd (level -1) performed very well against zlib, the data compression library in gzip. It was made known there are 22 levels of compression in zstd but I do not know how many levels are accepted in the OpenZFS development.

At the same time, compression takes advantage of multi-core processing, and actually can speed up disk I/O response because the original dataset to be processed is smaller after the compression reduction.

While TrueNAS® still defaults lz4 compression as of now, you can probably change the default compression with a command

# zfs set compression=zstd-6 pool/dataset

Your choice

TrueNAS® and FreeNAS™ support multiple compression algorithms. lz4, gzip and now zstd. That gives the administrator a choice to assign the right compression algorithm based on processing power, storage savings, and time to get the best out of the data stored in the datasets.

As far as the David vs Goliath tale goes, this real life use case was indeed a good one to share.

 

Tagged , , , , , , , , , , . Bookmark the permalink.

About cfheoh

I am a technology blogger with 25+ years of IT experience. I write heavily on technologies related to storage networking and data management because that is my area of interest and expertise. I introduce technologies with the objectives to get readers to *know the facts*, and use that knowledge to cut through the marketing hypes, FUD (fear, uncertainty and doubt) and other fancy stuff. Only then, there will be progress. I am involved in SNIA (Storage Networking Industry Association) and as of October 2013, I have been appointed as SNIA South Asia & SNIA Malaysia non-voting representation to SNIA Technical Council. I currently run a small system integration and consulting company focusing on storage and cloud solutions, with occasional consulting work on high performance computing (HPC).

One Response to A FreeNAS Compression Tale

  1. Pingback: Valuable News – 2021/03/29 |

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.