Accelerated Data Paths of High Performance Storage is the Cornerstone of building AI

It has been 2 months into my new role at DDN as a Solutions Architect. With many revolving doors around me, I have been trying to find the essence, the critical cog of the data infrastructure that supports the accelerated computing of the Nvidia GPU clusters. The more I read and engage, a pattern emerged. I found that cog in the supercharged data paths between the storage infrastructure systems and the GPU clusters. I will share more.

To set the context, let me start with a wonderful article I read in CIO.com back in July 2024. It was titled “Storage: The unsung hero of AI deployments“. It was music to my ears because as a long-time practitioner in the storage technology industry, it is time the storage industry gets its credit it deserves.

What is the data path?

To put it simply, a Data Path, from a storage context, is the communication route taken by the data bits between the compute system’s processing and program memory and the storage subsystem. The links and the established sessions can be within the system components such as the PCIe bus or external to the system through the shared networking infrastructure.

High speed accelerated data paths

In the world of accelerated computing such as AI and HPC, there are additional, more advanced technologies to create even faster delivery of the data bits. This is the accelerated data paths between the compute nodes and the storage subsystems. Following on, I share a few of these technologies that are lesser used in the enterprise storage segment.

Continue reading

Nurturing Data Governance for Cybersecurity and AI

Towards the middle of the 2000s, I started getting my exposure in Data Governance. This began as I was studying and practising to be certified as an Oracle Certified Professional (OCP) circa 2002-2003. My understanding of the value of data and databases in the storage world, now better known as data infrastructure, grew and expanded quickly. I never gotten my OCP certification because I ran out of money investing in the 5 required classes that included PL/SQL, DBA Admin I and II, and Performance Tuning. My son, Jeffrey was born in 2002, and money was tight.

The sentiment of data governance of most organizations I have engaged with at that time, and over the next course of almost 18 years or so, pre-Covid, the practice of data governance was to comply to some regulatory requirements. 

All that is changing. Early 2024, NIST released the second version of their Cybersecurity Framework (CSF). CSF 2.0 placed Data Governance in the center of the previous 5 pillars of CSF 1.1. The diagram below shows the difference between the versions.

High level change of Cybersecurity Framework 1.1 to 2.0.

Ripples like this in my data management radar are significant, noticeable and important to me. I blogged about it in my April 2024 blog “NIST CSF 2.0 brings Data Governance into the Light“.

Continue reading

Preliminary Data Taxonomy at ingestion. An opportunity for Computational Storage

Data governance has been on my mind a lot lately. With all the incessant talks and hype about Artificial Intelligence, the true value of AI comes from good data. Therefore, it is vital for any organization embarking on their AI journey to have good quality data. And the journey of the lifecycle of data in an organization starts at the point of ingestion, the data source of how data is either created, acquired to be presented up into the processing workflow and data pipelines for AI training and onwards to AI applications.

In biology, taxonomy is the scientific study and practice of naming, defining and classifying biological organisms based on shared characteristics.

And so, begins my argument of meshing these 3 topics together – data ingestion, data taxonomy and with Computational Storage. Here goes my storage punditry.

Data Taxonomy in post-injection 

I see that data, any data, has to arrive at a repository first before they are given meaning, context, specifications. These requirements are different from file permissions, ownerships, ctime and atime timestamps, the content of the ingested data stream are made to fit into the mould of the repository the data is written to. Metadata about the content of the data gives the data meaning, context and most importantly, value as it is used within the data lifecycle. However, the metadata tagging, and preparing the data in the ETL (extract load transform) or the ELT (extract load transform) process are only applied post-ingestion. This data preparation phase, in which data is enriched with content metadata, tagging, taxonomy and classification, is expensive, in term of resources, time and currency.

Elements of a modern event-driven architecture including data ingestion (Credit: Qlik)

Even in the burgeoning times of open table formats (Apache Iceberg, HUDI, Deltalake, et al), open big data file formats (Avro, Parquet) and open data formats (CSV, XML, JSON et.al), the format specifications with added context and meanings are added in and augmented post-injection.

Continue reading

Data Trust and Data Responsibility. Where we should be at before responsible AI.

Last week, there was a press release by Qlik™, informing of a sponsored TechTarget®‘s Enterprise Strategy Group (ESG) about the state of responsible AI practices across industries. The study highlighted critical gaps in the approach to responsible AI, ethical AI practices and AI regulatory compliances. From the study, Qlik™ emphasizes on having a solid data foundation. To get to that bedrock foundation, we must trust the data and we must be responsible for the kinds of data that built that foundation. Hence, Data Trust and Data Responsibility.

There is an AI boom right now. Last year alone, the AI machine and its hype added in USD$2.4 trillion market cap to US tech companies. 5 months into 2024, AI is still supernova hot. And many are very much fixated to the infallible fables and tales of AI’s pompous splendour. It is this blind faith that I see many users and vendors alike sidestepping the realities of AI in the present state as it is.

AI is not always responsible. Then it begs the question, “Are we really working with a responsible set of AI applications and ecosystems“?

Responsible AI. Are we there yet?

AI still hallucinates, unfortunately. The lack of transparency of AI applications coming to a conclusion and a recommended decision is not always known. What if you had a conversation with ChatGPT and it says that you are dead. Well, that was exactly what happened when Tom’s Guide writer, Tony Polanco, found out from ChatGPT that he passed away in September 2021.

Continue reading

Disaggregation and Composability vital for AI/DL models to scale

New generations of applications and workloads like AI/DL (Artificial Intelligence/Deep Learning), and HPC (High Performance Computing) are breaking the seams of entrenched storage infrastructure models and frameworks. We cannot continue to scale-up or scale-out the storage infrastructure to meet these inundating fluctuating I/O demands. It is time to look at another storage architecture type of infrastructure technology – Composable Infrastructure Architecture.

Infrastructure is changing. The previous staid infrastructure architecture parts of compute, network and storage have long been thrown of the window, precipitated by the rise of x86 server virtualization almost 20 years now. It triggered a tsunami of virtualizing everything, including storage virtualization, which eventually found a more current nomenclature – Software Defined Storage. Both storage virtualization and software defined storage (SDS) are similar and yet different and should be revered through different contexts and similar goals. This Tech Target article laid out both nicely.

As virtualization raged on, converged infrastructure (CI) which evolved into hyperconverged infrastructure (HCI) went fever pitch for a while. Companies like Maxta, Pivot3, Atlantis, are pretty much gone, with HPE® Simplivity and Cisco® Hyperflex occasionally blipped in my radar. In a market that matured very fast, HCI is now dominated by Nutanix™ and VMware®, with smaller Microsoft®, Dell EMC® following them.

From HCI, the attention of virtualization has shifted something more granular, more scalable in containerization. Despite a degree of complexity, containerization is taking agility and scalability to the next level. Kubernetes, Dockers are now mainstay nomenclature of infrastructure engineers and DevOps. So what is driving composable infrastructure? Have we reached the end of virtualization? Not really.

Evolution of infrastructure. Source: IDC

It is just that one part of the infrastructure landscape is changing. This new generation of AI/ML workloads are flipping the coin to the other side of virtualization. As we see the diagram above, IDC brought this mindset change to get us to Think Composability, the next phase of Infrastructure.

Continue reading

Societies in crisis. Data at Fault

The deluge of data is astounding. We get bombarded and attacked by data every single waking minute of our day. And it will get even worse. Our senses will be numbed into submission. In the end, I ask in the sense of it all. Do we need this much information force fed to us at every second of our lives?

We have heard about the societies a decade ago living in the Information Age and now, we have touted the Social Age. TikTok, Youtube, Twitter, Spotify, Facebook, Metaverse(s) and so many more are creating societies that are defined by data, controlled by data and governed by data. Data can be gathered so easily now that it is hard to make sense of what is relevant or what is useful. Even worse, private data, information about the individual is out there either roaming without any security guarding it, or sold like a gutted fish in the market. The bigger “whales” are peddled to the highest bidder. So, to the prudent human being, what will it be?

Whatever the ages we are in, Information or Social, does not matter anymore. Data is used to feed the masses; Data is used to influence the population; Data is the universal tool to shape the societies, droning into submission and ruling them to oblivion.

Societies burn

GIGO the TikTok edition

GIGO is Garbage In Garbage Out. It is an age old adage to folks who have worked with data and storage for a long time. You put in garbage data, you get garbage output results. And if you repeat the garbage in enough times, you would have created a long lasting garbage world. So, imagine now that the data is the garbage that is fed into the targeted society. What will happen next is very obvious. A garbage society.

Continue reading

Truthful information under attack. The call for Data Preservation

The slogan of The Washington Post is “Democracy Dies in Darkness“. Although not everyone agrees with the US brand of democracy, the altruism of WaPo‘s (the publication’s informal name) slogan is a powerful one. The venerable newspaper remains the beacon in the US as one of the most trustworthy sources of truthful, honest information.

4 Horsemen of Apocalypse with the 5th joining

Misinformation

Misinformation has become a clear and present danger to humanity. Fake news, misleading information, lies are fueling and propelling the propaganda and agenda of the powerful (and the deranged). Facts are blurred, obfuscated, and even removed and replaced with misinformation to push for the undesirable effects that will affect the present and future generations.

The work of SNIA®

Data preservation is part of Data Management. More than a decade ago, SNIA® has already set up a technical work group (TWG) on Long Term Retention and proposed a format for long-term storage of digital format. It was called SIRF (Self-contained Information Retention Format). In the words of SNIA®, “The SIRF format enables long-term physical storage, cloud storage and tape-based containers effective and efficient ways to preserve and secure digital information for many decades, even with the ever-changing technology landscape.”

I don’t think battling misinformation was SNIA®’s original intent, but the requirements for a vendor-neutral organization as such to present and promote long term data preservation is more needed than ever. The need to protect the truth is paramount.

SNIA® continues to work with many organizations to create and grow the ecosystem for long term information retention and data preservation.

NFTs can save data

Despite the hullabaloo of NFTs (non-fungible tokens), which is very much soiled and discredited by the present day cryptocurrency speculations, I view data (and metadata) preservation as a strong use case for NFTs. The action is to digitalize data into an NFT asset.

Here are a few arguments:

  1. NFTs are unique. Once they are verified and inserted into the blockchain, they are immutable. They cannot be modified, and each blockchain transaction is created with one never to be replicated hashed value.
  2. NFTs are decentralized. Most of the NFTs we know of today are minted via a decentralized process. This means that the powerful cannot (most of the time), effect the NFTs state according to its whims and fancies. Unless the perpetrators know how to manipulate a Sybil attack on the blockchain.
  3. NFTs are secure. I have to set the knowledge that NFTs in itself is mostly very secure. Most of the high profiled incidents related to NFTs are more of internal authentication vulnerabilities and phishing related to poor security housekeeping and hygiene of the participants.
  4. NFTs represent authenticity. The digital certification of the NFTs as a data asset also define the ownership and the originality as well. The record of provenance is present and accounted for.

Since NFTs started as a technology to prove the assets and artifacts of the creative industry, there are already a few organizations that playing the role. Orygin Art is one that I found intriguing. Museums are also beginning to explore the potential of NFTs including validating and verifying the origins of many historical artifacts, and digitizing these physical assets to preserve its value forever.

The technology behind NFTs are not without its weaknesses as well but knowing what we know today, the potential is evident and power of the technology has yet to be explored fully. It does present a strong case in preserving the integrity of truthful data, and the data as historical artifacts.

Protect data safety and data integrity

Misinformation is damaging. Regardless if we believe the Butterfly Effect or not, misinformation can cause a ripple effect that could turn into a tidal wave. We need to uphold the sanctity of Truth, and continue to protect data safety and data integrity. The world is already damaged, and it will be damaged even more if we allow misinformation to permeate into the fabric of the global societies. We may welcome to a dystopian future, unfortunately.

This blog hopes to shake up the nonchalant state that we view “information” and “misinformation” today. There is a famous quote that said “Repeat a lie often enough and it becomes the truth“. We must lead the call to combat misinformation. What we do now will shape the generations of our present and future. Preserve Truth.

WaPo “Democracy Dies in Darkness”

[ Condolence: Japan Prime Minister, Shinzo Abe, was assassinated last week. News sources mentioned that the man who killed him had information that the slain PM has ties to a religious group that bankrupted his mother. Misinformation may played a role in the killing of the Japanese leader. ]

All the Sources and Sinks going to Object Storage

The vocabulary of sources and sinks are beginning to appear in the world of data storage as we witness the new addition of data processing frameworks and the applications in this space. I wrote about this in my blog “Rethinking data. processing frameworks systems in real time” a few months ago, introducing my take on this budding new set of I/O characteristics and data ecosystem. I also started learning about the Kappa Architecture (and Lambda as well), a framework designed to craft and develop a set of amalgamated technologies to handle stream processing of a series of data in relation to time.

In Computer Science, sources and sinks are considered external entities that often serve as connectors of input and output of disparate systems. They are often not in the purview of data storage architects. Also often, these sources and sinks are viewed as black boxes, and their inner workings are hidden from the views of the data storage architects.

Diagram from https://developer.here.com/documentation/get-started/dev_guide/shared_content/topics/olp/concepts/pipelines.html

The changing facade of data stream processing presents the constant motion of data, the continuous data being altered as it passes through the many integrated sources and sinks. We are also see much of the data processed in-memory as much as possible. Thus, the data services from a traditional storage model of SAN and NAS may straggle with the requirements demanded by this new generation of data stream processing.

As the world of traditional data storage processing is expanding into data streams processing and vice versa, and the chatter of sources and sinks can no longer be ignored.

Continue reading