Don’t just look at disk reliability!

I am sure that many of you in the storage networking industry can relate to this very well.

When 1 or 2 disk drives fail, the customer will usually press you for an answer and usually this question will pop up. “How come the MTBF is 1.5 million hours but the drive(s) failed after a few months? We also get asked of “How reliable are the disks?” “How sure are you that the storage disks I buy will last?”

And for us in this line, we cannot deny the fact that the customer should be better informed (or at least we get cheesed off by these questions). A few blogs ago, I took the easy way out and educated the customer about MTBF (Mean Time Between Failure). This is only a quarter of the story because MTBF alone does not determine the reliability of the storage ecosystem and the reliability of the storage ecosystem (which translates to data availability) is something that the customer should ask rather than spending their time pressing their annoyance onto you about 1 or 2  disk failures.

I also want to say a little about another disk reliability statistics called AFR. More about that later.

Let’s get a little deeper with disk MTBF. Disk MTBF is a statistically calculated, pre-production measurement. The key word here is “PRE” meaning that THIS IS NOT A FIELD TESTED statistics! This is a statistical likelihood of how long a disk device will last.

One thing to note is how MTBF is derived. In fact, MTBF is established before the entire disk drive line goes into volume production. Typically, there is a process called Real Demonstration Test (RDT). RDT involves putting about 1,000 or more drives into a testing chamber, running them very hard, in elevated temperatures with 100% I/O for about 6-8 weeks. This is to simulate the harshest of an operating environment and inevitably, some disk drives will fail. From these failures, the MTBF is calculated.

A enterprise hard disk drives MTBF will usually be between 1.2 million to 2.0 million hours while the consumer grade drives usually have MTBF of about 300,000-600,000 hours. Therefore, it is important to educate customers because customers like to use some home office/SMB storage solutions to compare with the enterprise storage solution you are about to propose to him.

One of the war stories I heard was from a high-definition video production house. They get hundreds of thousands of Malaysian Ringgit worth of contract from a satellite TV content provider. But being less “educated” (could also be translated to being cheapo), they decided to store their valuable video contents on Buffalo NAS storage. And video production environments can be harsh. The I/O stress on the disks are strenuous and the Buffalo NAS disks crashed. They lost all contents (I don’t know what happened to their backup), and they were fined hundreds of thousands of Malaysian Ringgit and had their contract terminated on the spot. This is not to say that the Buffalo NAS is a poor product, but they got the wrong product for the job. You can’t expect to race the Formula 1 with an old jalopy, can you? You got to get the right solution for the job, even if it costs more.

So the moral of the story is – “Educate yourself and be prepared to invest if the dollar value of the data is more important than what are you think you might be cost-saving”

Over the years, MTBF (even though it is still very much in use today) is getting less and less useful as a reliability measurement. So, what’s better? AFR!

AFR or Annualized Failure Rate has been in use for almost 10 years now, and Seagate, the hard disk manufacturer, uses the AFR value heavily. AFR is the percentage of the installed bases of hard disk drives that failed and returned to factory in a given year. This is a more realistic figure and it is the statistics from the field. The typical value for enterprise disk drives  is usually between 0.7-1.0% although a few years ago, Google created a splash in the industry when they reported in an AFR of 36%. For those who would like to read Google’s paper, click here.

Therefore AFR is a more reliable measurement of disk reliability than MTBF.

But disk reliability is just a 1/4 of the story. We need to be out there educating the customers about the storage ecosystem reliability rather than a specific component. The data availability is paramount because components will fail throughout the lifecycle of the solution. That is why there are technology like RAID, snapshots, backup, mirroring and so on to ensure that the data is made available for the operations and businesses to continue.

Ultimately, if the customer wants to use the disk MTBF onto you, he’s basically shooting at you with the wrong bullet. It’s time you storage networking professional out there educate the customers.

HP StoreOnce – Further Depth

I promised last week I will look deeper into HP StoreOnce technology and I did. As I mentioned in my previous blog, HP StoreOnce technology now embedded in its D2D series of secondary, target backup devices that does the job with no fuss and no fancy bells and whistles.

Here’s the lineup of the present HP D2D solutions.

 

HP Malaysia has constantly reminded me that their D2D deduplication solution is much more price competitive than their competitors and this is something you, the readers, have to find out on your own. But I do believe that they are. Unfortunately they did not have the first mover’s advantage when Data Domain took the industry by storm in 2009, since HP StoreOnce was only launched with much fanfare last year in June 2010. Despite that, there still plenty of room in the IT market to grow, especially in HP’s huge set of customers.

Without the first movers advantage, HP StoreOnce has to differentiate itself from the existing competitors such as EMC Data Domain and Quantum. Labeling their deduplication technology as version 2.0 (whereas the competitors are still at “Version 1.0”?), HP StoreOnce banks on 3 key technologies. They are

  • Sparse Indexing
  • Intelligent Block Size Management
  • Reduction in Disk Fragmentation

Out of these 3, sparse indexing is the most interesting but I will save the best from last. Let’s start with Intelligent Block Size Management.

HP StoreOnce uses a variable chunking method with a smaller granularity of 4K in size and this is managed intelligently, thus achieving a higher deduplication ratio compared to its competitors which either uses a fixed chunking method or with a variable chunking method of larger block sizes in the range of 8K to 32K. The HP Lab’s testing reveals that the space savings was significant when compared with others.

Below are a set of results for a PowerPoint presentation and you can see for yourself.

 

(NOTE: Please note that the savings/deduplication ratio can be very different and can range from good to bad for different types of data. Video and images files are highly encoded. Seismic and geo-mapping files are highly compressed. It is very likely that most deduplication solutions cannot achieve a high percentage with these types of files)

Point #2 talks about Reduction in Disk Fragmentation. The inherent benefits from Intelligent Block Size Management brings about the Reduction in Disk Fragmentation. The smaller chunks means lesser space wastage, especially when the block size is 4K or lower. HP StoreOnce also uses an intelligent algorithm to place the blocks that are perceived to be related close to one another. Hence this “locality” presence helps and the retrieval and restore process will be faster and more efficient.

Sparse Indexing is where HP StoreOnce touts to be a game changer. Today’s data is already as massive as a mountain, and it’s going to get bigger and growing faster. Using “Version 1.0” type of deduplication, the hashes created are stored in either memory or on disks. However, the massive data sets (especially unstructured data) are already producing massive amounts of hashes. Hashes are used to identify unique data blocks but the avalanche of unstructured data means that most deduplication solutions are generating more and more hashes, making most Version 1.0s hashes sluggish and difficult to retrieve.

Sparse Indexing addresses this hash problem (by the way, HP StoreOnce uses SHA-1 hash) by intelligently sampling a small chunks and creating a very fast index lookup mechanism that stays in the system’s memory all the time. As the engineers at HP Labs put it

Instead of holding every index item in RAM ready for comparison,
the HP team keeps just one in every hundred or so items in RAM
and puts the rest onto a hard drive. Duplicate data almost
always arrives in bursts. In other words, if one chunk of the
arriving stream is a duplicate, it is very likely that many
following chunks are duplicates. Sparse indexing takes advantage
of this phenomenon by storing the sequence of hashes of the
stored chunks next to each other on disk. As a result, a ‘hit’
in the sample RAM index can direct the system to an area of
the disk where many duplicates are likely to be found.

Sparse Indexing is not unique in the industry, but the engineers at HP Labs have put their thinking hats on and applied it to improve the search and looking up of the hashes in the StoreOnce deduplication technology.

Further savings are also achieved when the deduped data is compressed with the LZ (Lempel-Ziv) compression method before it is stored into the disks.

The HP StoreOnce technology is 100% fully concocted in the renown HP Labs and according to sources, this technology will indeed permeate across all HP StorageWorks (HP has since renamed it to HP Storage) line. With this strategy, HP hopes to address the “fragmented and complicated” (as quoted by HP) deduplication and data protection strategy across the enterprise. By “fragmented and complicated”, they mean that the deduplicated data constant has to be rehydrated and deduped again as the data moves across different IT devices and functions.

In a perfect world, HP wants their StoreOnce technology to be like the diagram below.

 

However, one very interesting fact that I found was HP does not believe that primary storage deduplication is a good idea. They claim that it complicates the whole thing. Whether HP likes it or not, NetApp has been dishing out primary storage deduplication for several years now and you don’t see their customers unhappy with NetApp about this feature.

In one of the HP Business whitepapers I read, one of the takeaways was

 

I was like, “Whoa! What’s this?”. I felt bemused about what was mentioned in the whitepaper. After all the best claims of the HP StoreOnce technology, I can’t help but to think that this could be a banana skin on the pavement for HP.


Joe Tucci to quit as EMC’s CEO

News of Joe Tucci quitting EMC at the end of 2012 is abuzz tonight. Here’s one from The Register.

He is one of the longest serving CEO in the storage industry and since he took over the helm in 2001, he has brought EMC to where it is today. Like him or loathe him, you cannot deny that he is one of the best out there. Having gone thru at least 3 economic downturns, he has turned EMC into an industry giant, a juggernaut.

The next question is who will succeed him? There are many candidates from long-serving senior staff to the new ones that EMC has recruited in the recent years. It will only be end of 2012 when Joe finally leaves EMC but the search for his successor will be an interesting one. We shall soon know.

The rise of the specialized appliance

Compute and storage are 2 components within the IT infrastructure which are surely converging. SAN and NAS are facing their greatest adversary yet, and could be made insignificant if the cloud and virtualization game had their way. This is giving rise to the a new breed of solution, a specialized appliance where both compute and storage are ONE. Rising from the ashes of shared storage (SAN and NAS, take note), we are beginning to see things going back to way of direct, internal storage.

There were some scuffles in the bushes about 5 years, where Sun (now Oracle) was ahead of its game. The Sun Fire X4500 (aka Thumper) was one of the strong candidates to challenge the SAN/NAS duopoly in this networked storage period. X4500 integrated both the server and the storage components together, using ZFS as a file system and volume manager to deliver a very high throughput on all the JBOD disks very efficiently. ZFS acted as the RAID, so there was no need to have specialized RAID hardware. This proved that a very high performance storage solution can be easily integrated using standard off-the-shelf infrastructure components and the x86 architecture. By combining both compute and storage together, there were hints that the industry was about to rise up to Direct-Attached Storage (DAS) again, despite its perceived weakness against SAN and NAS.

Unfortunately, the applications were not ready for DAS then. Besides ZFS, applications such as databases, emails and file servers were not ready to jump into the DAS bandwagon and watch them ride into the sunset. But the fairy tale seems to be retold again, and this time, the evidence that DAS could rise again is much stronger.

The catalyst to this disruptive force? Virtualization!

I mentioned that VMware is the silent storage killer a few blogs ago. Needless to say, that ruffled a few featheres among the readers. I have no doubt that virtualization is changing how we storage guys look at SAN and NAS. In a traditional setup, the SAN or NAS is setup to provision LUNs or mount points to the data storage for VMFS volumes in the VMware environment. It will then be the storage array to provide snapshots, replications, thin provisioning and so on.

Perhaps VMware is nit picking that managing storage arrays for VMFS volumes is difficult. From the VMware administrators view, they are right. They don’t want to know what’s going on below the VM-level. All they want is storage, any kind of storage and VMware will manage the volumes, snapshots, replication and thin  provisioning. Indeed they were already doing that since vStorage API was introduced. In the new release of VMware version 5.0, the ante has been upped even higher, making networked storage less and less significant.

If you want to know about vStorage API and stuff, below is a diagram of the integration of the various components at the VMware API level.

 

VMware can now use direct, internal storage look like shared storage. The Virtual Storage Appliance (VSA) does just that. VMware already has a thriving market from the community and hobbists for VMware Appliances.

The appliance market has now evolved into new infrastructure too. Using x86 architecture, off-the-shelf infrastructure components (sounds familiar?), companies such as Nutanix and Tintri are taking advantage of this booming trend to introduce specialized VMware appliances as shown in their advertisements on their respective web sites.

Here’s the Nutanix Ad:

 

Here’s the Tintri Ad:

 

Both Tintri and Nutanix are a new breed of appliances – specialized appliances for VMware.

At the same time, other applications are building these specialized appliances as well. I have mentioned Oracle Exadata many times in the past and Oracle Exadata is the perfect example an a fine-tuned, hardcore database engine to make the Oracle run at the best performance possible.

Likewise HP has announced their E5000 Messaging System for Microsoft Exchange. The E5000 is a specialized appliance optimized and well-tuned for the Microsoft Exchange Server 2010. From the words of HP,

“HP E5000 Messaging System is the industry’s first fully self-contained platform built for the next-generation of Microsoft Exchange to deliver enterprise-class messaging to businesses of all sizes. Built as a turnkey solution that can be up and running in a few hours vs. days, the HP E5000 Messaging System gives business users the experience they want most: large mailboxes, centralized archiving of mailboxes files and 24×7 access from any device. IT staffs benefit the solutions simplicity to setup, scale and manage and to meet new demands affordably. Ideal for multi-site enterprises as well as branch office and remote office environments, each HP Messaging System delivers greater simplicity and accelerates deployment with preconfigured solutions starting at 500 mailboxes up to 3000 mailboxes, while delivering large, 1 to 2.5GB mailbox sizes. Clients can grow by adding storage capacity or more appliances within the environment up from hundreds to thousands of mailboxes.”

What are the specs of this E5000 box, you say? Here you go:

 

And look at Row#2 in the table above … Direct, Internal Disks! Look at Row #4, Xeon CPUs! Both Compute and Storage in the same appliance!

While the HP E5000 announcement was recently, Hitachi Data Systems were already in the game early with their Unified Compute Platform and their Converged Platform for Microsoft Exchange with relatively the same idea – specialized appliances.

Perhaps the HDS solutions aren’t exactly direct, internal storage but the concept is still the same – specialized appliance. HDS Unified Compute Platform (UCP) has these components.

 

HDS Converged Platform for MS Exchange provides their specialized “appliance” with Reference Architectures that can support up to 68,000 Microsoft Exchange mailboxes. Here’s an architecture diagram of their “appliance”

 

There’s no denying that the networked storage landscape is changing. So are the computing platforms. We are already seeing the compute and storage components being integrated together, tighter than ever. The wave is rising for specialized appliances and it can only get more intense from now on.

No wonder HP’s Converged Infrastructure vision is betting on x86 architecture, simple storage platforms with SAS/SATA disks and Virtualization. Other vendors are doing the same as well – Cisco, NetApp and VMware with their FlexPod solution and EMC with their VBlocks of VMware, Cisco and EMC Storage.

Hail to the Rise of the Specialized Appliance!

HP has a new CEO (again!)

It is past midnight and I can’t sleep. I haven’t been sleeping well lately, so I thought I catch up with some US news. And lo and behold, another big one showed up on Google News.

HP has fired Leo Apotheker and appointed Meg Whitman, the former boss of EBay, to become the new CEO and President of HP. Leo Apotheker was on the job for about 10 months (Damn!). Such actions shake investors confidence and not good for the image of the company. If Leo Apotheker wasn’t the right guy, why take him in the first place?

Leo is responsible for HP’s purchase of Autonomous just a  month ago and now, the HP vision and direction have to be realigned again.

Here’s one of the news from Reuters.

Wait! There’s more confidence shattering news. Excerpt from one of the online news:

 

HP has laid off hundreds of employees in its ill-fated foray 
into the mobile ecosystem. HP is trying to spin off its PC unit
and, at the same time, find a home for its fast deteriorating 
mobile assets, having spent billions of dollars trying to break 
into phones and tablets ($1 billion+ to buy Palm, investments 
in the business and write off of inventory) and then yanking 
the cord approximately 60 days into the adventure.

It is not hard to write not so good news about HP. They keep making such discouraging news on their own.

Deduplication – a fancy form of Compression?

One of the things that peeved at the HP D2D Workshop a few days ago was this heading in the HP PowerPoint slides – “Deduplication – a fancy form of Compression”. Somehow it bothered me.

I have always placed both deduplication and compression into a bucket I called “Data Reduction“. Some vendors might call it Storage Economics, spinning it in a cooler manner. Either way, both attempt and succeed to reduce the capacity required to store the amount of data and this translates into benefits in storage management and network. With a smaller data set, lesser processing and capacity are required, likely speeding up the performance of the storage array. At the same time, the primary data backup set (you know, the data that you back up every night?) becomes smaller, making backup and restore faster (not necessarily, but you have to rehydrate the data from its reduced state). Another obvious benefit is the ability to transfer the smaller data set over the network more efficiently, compared to its original state and size, making Disaster Recovery more possible and so on.

I have always known that deduplication works with data objects using a differential method. Whether the data object is a file or a chunk of the file, deduplication attempts to differentiate similarities (duplicates), and store one copy of that object and have others referencing to the single object. The differentiation methods commonly used are hashing and delta differential. In hashing, MD-5 and SHA-1 are the popular hashing algorithms used, while in delta differentials, the data objects are compared (usually in a scrutinizing manner) to find the differences. The duplicates or similarities are discarded.

There are many factors involved in deduplication. It could be the types of data, the processing power required to do the deduplication task, and throughput of processing and so on and resulting in the different deduplication ratio and time required to complete the process. I am not going to delve into that as there are many vendors who will be able to articulate this, such as EMC Data Domain, HP D2D/VLS with its StoreOnce technology, Exagrid, Sepaton, Dell Ocarina Networks, NetApp, EMC Centera, CommVault Simpana, Symantec PureDisk, Symantec NetBackup, EMC Avamar and many more.

Meanwhile, compression (especially most commercial compression technology) are based on dictionary coding, a lossless data reduction algorithm. Note that I am using the term encoding rather than compression because factually, encoding is the right word. You can’t squeeze the data into a smaller size like you do with a real life object.

The technique works like this.

  1. When being encoded, a bit/byte or a set of bytes are compared to a “dictionary” which is a pool of  “words”  in a data structure maintained by the encoding technology
  2. If a match is found, the bit/byte or set of bytes is substituted by an “word”, usually a much shorter (hence smaller size) representation form of the bytes being encoded.
  3. As the encoding process continues, more “dictionary words” are built into the “dictionary” based on the bytes already encoded. This is popularly known as the sliding window implementation.
  4. The end result is the data is highly encoded (heavily replaced) by “dictionary words”  and of a much smaller size.

One of the heavily implemented compression technique is based on the theory and methodology introduced by Lempel-Ziv and further enhanced by the Lempel-Ziv-Welch trio. A very good explanation of LZ method can be found here.

Both deduplication and compression have the same objective – that is to reduce the data size for more efficient storage. But both approach it from a different angle but they are by no means, exclusive. Both can be used to complement each other and further reduce the capacity required to store the data.

Deduplication usually works with larger data objects (chunks, files etc) while compression works harder at the lower level (byte range level). Deduplication is heavily deployed in secondary data sets (or backup) because you can find plenty of duplicates while in primary data sets (the data in production), deduplication and compression are deployed, either in a singular fashion or one after another. Deduplication is usually run as Step 1 and then Compression is run in Step 2.

So far, the only one that has impressed me for the primary data reduction is Ocarina Networks, which uses a 3 step approach in dedupe, compress and using specialized compactors to reduce the data even more. I have seen the ability of Ocarina reducing Schlumberger Geoframe and Petrel seismic data to more than 50%. That was impressive!

Having my bothered state satisfied, I guess having the say of “Deduplication – a fancy form of Compression” is someone else’s cup of tea. I would rather say “Deduplication – a fancy form of Data Reduction Technology” but I am not complaining as much I did before.

HP StoreOnce technology – job done!

I had the privilege to attend HP’s D2D workshop yesterday, thanks to the invitation of my old friend, Mr. CC Chung. He is Malaysia’s HP StorageWorks Division Country Manager

I am allowed to assess their D2D solution without fear or favour (I think) and the plush sling bag door gift has nothing to do with my assessment (what do you think? Ha, ha) So here goes.

I based my assessment from these criteria (something I picked up when I was mucking around with Data Domain for 3 months at MTech Security some years ago). The criteria are

  • Hash-based chunking granularity vs Single Instance Store (ala-EMC Centera)
  • Inline or post-processing
  • Source-based or target-based deduplication
  • Forward or reverse referencing (though it has little significance – for now)
  • Global or Local Deduplication

First of all, most people would ask about how well it dedupes and the technical guy’s answer would be “It depends …“. The sales would probably say “YMMV” (can anyone tell me what this acronym is for?). I believe the advertised rate is 20:1, pretty realistic because as we know in the deduplication world, the longer the data is retained, the higher the ratio can get. It also depends on the type of data to be deduped.

And of course, one of the participants (there are always skeptics) was bickering about how his customer was complaining that the deduplication ratio for a SQL database was lower than what was advertised. My take on this matter – Both the customer and the reseller are at fault! The customer happily took what the sales/pre-sales guy said in verbatim and expected fantastic results. The reseller was ill-equipped to know the D2D solution well and therefore, screwed the customer with realistic numbers for the wrong data type.

To me, as Justin (the HP Solution Architect) was presenting the HP D2D solution, I was ticking my check boxes for these criteria. And in my opinion, the HP D2D solution does the job. HP was telling the attendees that they will be surprised to know the end pricing for the D2D solution. I never got to know the figures and I never asked. But when compared to the king of the deduplication devices, Data Domain, it is likely to be lower.

So, here are the ticks to the HP D2D solution

  • In-line deduplication
  • Target-based (of course)
  • Hash-based chunking with variable length for deduplication granularity
  • Local Deduplication

They have several models ranging from the entry-level 2500 series to the 4100 and the 4300 series. After that, HP has another disparate deduplication solution meant for the higher end market called the VLS, and it was not presented in the workshop.

The D2D can be both a VTL and a NAS target dedupe device and the browser-based management GUI was simple and uncluttered. But what interested me was the HP StoreOnce technology, but I did not dig deeper into it. I found a nice video (below) to show a whiteboarding session for HP StoreOnce.

I promised to look deeper into it in a few days time. This week has been such a muck for me but overall, it has been turning up well at the end of the day.

Another thing that was interesting was its sparse indexing for the hashes and there were some dedupe vendors already doing the same thing. But, if you know me, I will research this for knowledge and benefit of all.

After the workshop, HP was so kind to give me an update about their Converged vision, how LeftHand, IBRIX, and 3PAR fit into their strategy and more importantly, their story to the storage market. I will speak more about this in the future. Of course, I will not reveal what’s in store for the future of the D2D solution, but all I can say is, I left the workshop feeling that the solution will do what it is supposed to, nothing more, nothing less. And I meant it in a good way.

I still reserve my opinions about HP because a lot of their storage business are still attached to the server side but hopefully with the upcoming P4000 and P6000 workshops coming up, my opinions may change a little.

VMware – the silent storage killer

When VMware 5.0 was launched last month, I heard the feature called Virtual Storage Appliance (VSA) was finally out and is now being offered as an SMB/SME “storage” solution. In my mind, alarm bells were ringing because in its own stealthy manner, VMware had just become a storage player.

What VMware is offering is “Hey! If you don’t have money to buy your enterprise storage array, don’t worry. Make your own shared storage with our very own VMware VSA“. VSA utilizes the internal disks of the ESX/ESXi host as its shared storage.

VSA is nothing new. For years, LeftHand Networks had one for its engineers to do demo and show the functionality of their solution. EMC had it too, and recently I found out that NetApp has its own VSA, but only resell through its partner, Fujitsu. I am not 100% sure about the NetApp thing and I need a NetApp guy to verify this.

Smaller players, but not insignificant, such as Nutanix, Nexenta and Tintri are already offering their own versions and implementation of VSA to their customers, each with its own uniqueness and differences. With the release of the VMware VSA into the open, we shall see all the big storage players offering their VSAs to VMware, like natives offering sacrifices to VMware God. Or perhaps, it has already begun. It is ala-Nexus 1000v all over again.

VMware has become a huge juggernaut and it is merely using its advantage to consolidate the storage component under its control. When VMware version 4.0 came out, vStorage API was introduced along with VAAI (vStorage API for Array Integration). VAAI was created to enhance the storage experience by offloading specific storage operations to the native features of that supported storage platform. That’s all I know about VAAI at this moment, but with this feature, the storage array is tightly integrating its platform to VMware, or should I say … quietly ensnared by VMware tentacles of doom! (Evil laugh in the background! Mua ha ha ha ….!)

In the recently past VMworld, this storage story is slowly being unfurled even more to the world. VASA (vStorage API for Storage Awareness) was recently announced and EMC’s COO Pat Gelsinger spoke about the tighter integration (that word again!) that blurs the administration domain of the VMware admin and the storage admin. Below is a video of Pat Gelsinger talking about VASA below (this is long 55 minute video – Click only if you have the time).

Mind you, the entire vStorage API is still evolving as VMware 5.0 rolls out but here’s the thing. VMware has come out and say that the storage world about LUNs, RAID groups and mount points are a level below what the VMware admin should be concerned about. VMware admins handles their storage at the VM level or as VMDK and therefore, anything below it is of little significance to them. Again, you can see that VMware is using its muscle to say “If you guys want to play, you have to play by my rules“.

So, some new announcements came out from VMworld for storage such as Capacity Pools, I/O Multiplexer, and Storage DRS (Storage Distributed Resource Management) and also an enhanced version (probably more storage resilient) SRM (Site Recovery Manager). All these are being managed at a level above the traditional storage admin level and VMware has said that the VMware admin would be able to carve out a VM volume with its own set of default storage properties, defined snapshot retentions, replication and perhaps even compression and deduplication. But all these will be happening at the VM volume or VMDK level, not a level below that.

Details are still sketchy at this point in time and we probably won’t see these GA until probably VMware version 6.0. But the inertia has been rocked quietly and the VMware storage momentum will gain strength as time passes by. We could see that VMware would just need JBOD (just a bunch of disks) because it has its own enterprise storage features through its vStorage APIs or its future storage specifications. We have seen it happening in VSA with VMware offering its own storage.

From the similar news, what surprised me was what was quoted as shown below.

The presenters said VMware developed the APIs with EMC, NetApp, Dell,
IBM and Hewlett-Packard,but they began the session with a disclaimer
that none of those vendors has committed to support the APIs in
their arrays.

Why the hell would EMC, NetApp, Dell, IBM and HP do something like that?!! Don’t they know that this could contribute to their insignificance in the future?

I am still perplexed but as the whole thing is still evolving, VMware seems to be only obvious winner here.

The demise of the IT engineer?

Scott Lowe is one of my favourite virtualization experts. I have 2 of his VMware books and his latest book on VMware 5.0 will be out next month. He is currently the CTO of EMC’s vSpecialist team and in one of his blog entries, he spoke about “The End of the Infrastructure Engineer” or IT Engineer in our local speak.

I wrote about having the Cloud will be forcing many of us to be out of our jobs last month. I mentioned that the emergence of Cloud Computing will be superceding the roles of system integrators and resellers, because the Cloud Computing Service Provider will bypass these 2 layers and goes direct to the end user or customer. This will render the role of the IT engineer less significant when they are working for the reseller or partner. Scott’s blog goes a step further saying the the IT engineer role will be gone and they could be forced to be in the application development space for Cloud Computing.

The gist of my blog last month was to get the IT engineer to think deeper and think how they should evolve to adapt and to adopt to this new Cloud paradigm. In Malaysia, in my almost 20-years of IT in the Malaysian IT scene, I have seen the decline of IT engineer. I don’t see many of the younger generation to taking a passionate and enthusiastic fire to enhance their skills and learn even more than it is required for their job. This is a sad thing and through my voluntary work with SNIA Malaysia, I hope to get some of the senior engineers (despite all the fancy titles, we are still pretty much engineers) to get off the fence to start a strong IT community on storage networking and data management technologies. I am strong believer of “If you build it, they will come”.

I agree with what Scott has mentioned, that the role of an IT Engineer will not go away because you will always need an IT Engineer (or Infrastructure Engineer) to manage the infra. But the jobs available for these positions will get scarcer and lesser. So, to those IT engineers who are just so-so, (ooops), you are not good enough anymore.

Perhaps it is a chicken-and-egg thing to say that if there’s no market, why should the IT engineer learn something more to be different and enhance himself/herself. But if this chicken-and-egg debate thing was to continue, then we will forever be trapped in a loop that does not change our status in IT. We will be forever in a rut while others continue to pass us by.

I am always amazed by the amount of intelligent people drawn to the Silicon Valley and with the reknown technology universities such as Stanford, UC Berkeley, MIT and Carnegie Mellon continue to innovate, we continue to see the birth of better, greater and disruptive ideas coming out from Silicon Valley. The IT community in Silicon Valley is very strong and we continue to get IT people challenging the status quo and be different. And more and more “Silicon Valley”-like communities are birthing around the world. Malaysia, in my frank opinion, spends too much time glamourizing (if there’s such a word) IT (or ICT in local Malaysian terminology) and does little to address the core of IT. Our IT people are too complacent and too obedient to be different.

So, here’s my argument to the skeptics of this chicken-and-egg thing. Yes, we only do what we must do to earn our pay for the bread-and-butter stuff in our Malaysian IT, but it is also time to break out from this loop. It’s time to be different, and it’s time get deeper into IT.

Nothing gives me the creeps to see an IT engineer going out to the customer and start pitching speeds and feeds. Come on, any customer could read that off a brochure or a datasheet! So there is absolutely no value in the IT engineer if they only know how to pitch speeds and feeds. Get to know in depth of the solution. Get down into the hardcore of things like the philosophy of the design of the solution. Learn deeper about technology and even better, start thinking of new ways to challenge what’s already out there.

I spend a lot of time learning about file systems in storage networks and that’s my passion. I hope that more IT engineers would break away from the norm to do more. Believe me, as Cloud Computing becomes more prevalent in the Malaysia IT scene, there will be demand for damn good IT engineers, not the ones who knows only speeds and feeds.