Dell EMC Isilon is an Emmy winner!

[ Disclosure: I was invited by GestaltIT as a delegate to their Storage Field Day 19 event from Jan 22-24, 2020 in the Silicon Valley USA. My expenses, travel, accommodation and conference fees were covered by GestaltIT, the organizer and I was not obligated to blog or promote the vendors’ technologies presented at this event. The content of this blog is of my own opinions and views ]

And the Emmy® goes to …

Yes, the Emmy® goes to Dell EMC Isilon! It was indeed a well deserved accolade and an honour!

Dell EMC Isilon had just won the Technology & Engineering Emmy® Awards a week before Storage Field Day 19, for their outstanding pioneering work on the NAS platform tiering technology of media and broadcasting content according to business value.

A lasting true clustered NAS

This is not a blog to praise Isilon but one that instill respect to a real true clustered, scale-out file system. I have known of OneFS for a long time, but never really took the opportunity to really put my hands on it since 2006 (there is a story). So here is a look at history …

Back in early to mid-2000, there was a lot of talks about large scale NAS. There were several players in the nascent scaling NAS market. NetApp was the filer king, with several competitors such as Polyserve, Ibrix, Spinnaker, Panasas and the young upstart Isilon. There were also Procom, BlueArc and NetApp’s predecessor Auspex. By the second half of the 2000 decade, the market consolidated and most of these NAS players were acquired.

Continue reading

DellEMC Project Nautilus Re-imagine Storage for Streams

[ Disclosure: I was invited by GestaltIT as a delegate to their Storage Field Day 19 event from Jan 22-24, 2020 in the Silicon Valley USA. My expenses, travel, accommodation and conference fees were covered by GestaltIT, the organizer and I was not obligated to blog or promote the vendors’ technologies presented at this event. The content of this blog is of my own opinions and views ]

Cloud computing will have challenges processing data at the outer reach of its tentacles. Edge Computing, as it melds with the Internet of Things (IoT), needs a different approach to data processing and data storage. Data generated at source has to be processed at source, to respond to the event or events which have happened. Cloud Computing, even with 5G networks, has latency that is not sufficient to how an autonomous vehicle react to pedestrians on the road at speed or how a sprinkler system is activated in a fire, or even a fraud detection system to signal money laundering activities as they occur.

Furthermore, not all sensors, devices, and IoT end-points are connected to the cloud at all times. To understand this new way of data processing and data storage, have a look at this video by Jay Kreps, CEO of Confluent for Kafka® to view this new perspective.

Data is continuously and infinitely generated at source, and this data has to be compiled, controlled and consolidated with nanosecond precision. At Storage Field Day 19, an interesting open source project, Pravega, was introduced to the delegates by DellEMC. Pravega is an open source storage framework for streaming data and is part of Project Nautilus.

Rise of  streaming time series Data

Processing data at source has a lot of advantages and this has popularized Time Series analytics. Many time series and streams-based databases such as InfluxDB, TimescaleDB, OpenTSDB have sprouted over the years, along with open source projects such as Apache Kafka®, Apache Flink and Apache Druid.

The data generated at source (end-points, sensors, devices) is serialized, timestamped (as event occurs), continuous and infinite. These are the properties of a time series data stream, and to make sense of the streaming data, new data formats such as Avro, Parquet, Orc pepper the landscape along with the more mature JSON and XML, each with its own strengths and weaknesses.

You can learn more about these data formats in the 2 links below:

DIY is difficult

Many time series projects started as DIY projects in many organizations. And many of them are still DIY projects in production systems as well. They depend on tribal knowledge, and these databases are tied to an unmanaged storage which is not congruent to the properties of streaming data.

At the storage end, the technologies today still rely on the SAN and NAS protocols, and in recent years, S3, with object storage. Block, file and object storage introduce layers of abstraction which may not be a good fit for streaming data.

Continue reading

Komprise is a Winner

[Disclosure: I was invited by GestaltIT as a delegate to their Storage Field Day 19 event from Jan 22-24, 2020 in the Silicon Valley USA. My expenses, travel, accommodation and conference fees were covered by GestaltIT, the organizer and I was not obligated to blog or promote the vendors’ technologies to be presented at this event. The content of this blog is of my own opinions and views]

I, for one perhaps have seen far too many “file lifecycle and data management” software solutions that involved tiering, hierarchical storage management, ILM or whatever you call them these days. If I do a count, I would have managed or implemented at least 5 to 6 products, including a home grown one.

The whole thing is a very crowded market and I have seen many which have come and gone, and so when the opportunity to have a session with Komprise came at Storage Field Day 19, I did not carry a lot of enthusiasm.

Continue reading

Did Cloud Kill LTFS?

I like LTFS (Linear Tape File System). I was hoping it would take off but it has not. And looking at its future, its significance is becoming less and less relevant. I look if Cloud has been a factor in the possible demise of LTFS in the next few years.

What is LTFS?

In a nutshell, Linear Tape File System makes LTO tapes look like a disk with a file system. It takes a tape and divides it into 2 partitions:

  • Index Partition (XML Index Schema with file names, metadata and attributes details)
  • Data Partition (where the data resides)

Diagram from https://www.snia.org/sites/default/orig/SDC2011/presentations/tuesday/DavidPease_LinearTape_File_System.pdf

It has a File System module which is implemented in supported OS of Unix/Linux, MacOS and Windows. And the mounted file system “tape partition” shows up as a drive or device.

Assassination attempts

There were many attempts to kill off tapes and so far, none has been successful.

Among the “tape-killer” technologies, I think the most prominent one is the VTL (Virtual Tape Library). There were many VTLs I encountered during my days in mid-2000s. NetApp had Alacritus and EMC had Clariion Disk Libraries. There were also IBM ProtecTIER, FalconStor VTL (which is still selling today) among others and Sepaton (read in reverse is “No Tapes’). Sepaton was acquired by Hitachi Data Systems several years back. Continue reading

Sexy HPC storage is all the rage

HPC is sexy

There is no denying it. HPC is sexy. HPC Storage is just as sexy.

Looking at the latest buzz from Super Computing Conference 2018 which happened in Dallas 2 weeks ago, the number of storage related vendors participating was staggering. Panasas, Weka.io, Excelero, BeeGFS, are the ones that I know because I got friends posting their highlights. Then there are the perennial vendors like IBM, Dell, HPE, NetApp, Huawei, Supermicro, and so many more. A quick check on the SC18 website showed that there were 391 exhibitors on the floor.

And this is driven by the unrelentless demand for higher and higher performance of computing, and along with it, the demands for faster and faster storage performance. Commercialization of Artificial Intelligence (AI), Deep Learning (DL) and newer applications and workloads together with the traditional HPC workloads are driving these ever increasing requirements. However, most enterprise storage platforms were not designed to meet the demands of these new generation of applications and workloads, as many have been led to believe. Why so?

I had a couple of conversations with a few well known vendors around the topic of HPC Storage. And several responses thrown back were to put Flash and NVMe to solve the high demands of HPC storage performance. In my mind, these responses were too trivial, too irresponsible. So I wanted to write this blog to share my views on HPC storage, and not just about its performance.

The HPC lines are blurring

I picked up this video (below) a few days ago. It was insideHPC Rich Brueckner interview with Dr. Goh Eng Lim, HPE CTO and renowned HPC expert about the convergence of both traditional and commercial HPC applications and workloads.

I liked the conversation in the video because it addressed the 2 different approaches. And I welcomed Dr. Goh’s invitation to the Commercial HPC community to work with the Traditional HPC vendors to help push the envelope towards Exascale SuperComputing.

Continue reading

Is Pure Play Storage good?

I post storage and cloud related articles to my unofficial SNIA Malaysia Facebook community (you are welcomed to join) every day. It is a community I started over 9 years ago, and there are active live banters of the posts of the day. Casual, personal were the original reasons why I started the community on Facebook rather than on LinkedIn, and I have been curating it religiously for the longest time.

The Big 5 of Storage (it was Big 6 before this)

Looking back 8-9 years ago, the storage vendor landscape of today has not changed much. The Big 5 hegemony is still there, still dominating the Gartner Magic Quadrant for Enterprise and Mid-end Arrays, and is still there in the All-Flash quadrant as well, albeit the presence of Pure Storage in that market.

The Big 5 of today – Dell EMC, NetApp, HPE, IBM and Hitachi Vantara – were the Big 6 of 2009-2010, consisting of EMC, NetApp, Dell, HP, IBM and Hitachi Data Systems. The All-Flash, or Gartner calls it Solid State Arrays (SSA) market was still an afterthought, and Pure Storage was just founded. Pure Storage did not appear in my radar until 2 years later when I blogged about Pure Storage’s presence in the market.

Here’s a look at the Gartner Magic Quadrant for 2010:

We see Pure Play Storage vendors in the likes of EMC, NetApp, Hitachi Data Systems (before they adopted the UCP into their foray), 3PAR, Compellent, Pillar Data Systems, BlueArc, Xiotech, Nexsan, DDN and Infortrend. And when we compare that to the 2017 Magic Quadrant (I have not seen the 2018 one yet) below:

Continue reading

DellEMC SC progressing well

[Preamble: I was a delegate of Storage Field Day 14. My expenses, travel and accommodation were paid for by GestaltIT, the organizer and I was not obligated to blog or promote the technologies presented at this event. The content of this blog is of my own opinions and views]

I haven’t had a preview of the Compellent technology for a long time. My buddies at Impact Business Solutions were the first to introduce the Compellent technology called Data Progression to the local Malaysian market and I was invited to a preview back then. Around the same time, I also recalled another rather similar preview invitation by PTC Singapore for the 3PAR technology called Adaptive Provisioning (it is called Adaptive Optimization now).

Storage tiering was on the rise in the 2009-2010 years. Both Compellent and 3PAR were neck and neck leading the conversation and mind share of storage tiering, and IBM easyTIER and EMC FAST (Fully Automated Storage Tiering) were nowhere to be seen or heard. Vividly, the Compellent Data Progression technology was much more elegant compared to the 3PAR technology. While both intelligent storage tiering technologies were equally good, I took that the 3PAR founders were ex-Sun Microsystems folks, and Unix folks sucked at UX. In this case, Compellent’s Data Progression was a definitely a leg up better than 3PAR.

History aside, this week I have the chance to get a new preview of the Compellent technology again. Compellent was now rebranded as the SC series and was positioned as the mid-range storage arrays of DellEMC. And together with the other Storage Field Day 14 delegates, I have the pleasure to experience the latest SC Data Progression technology update, as well their latest SC All-Flash.

In Data Progression, one interesting feature which caught my attention was the RAID Tiering. This was a dynamic auto expand and auto contract set of RAID tiersRAID 10 and RAID 5/6 in the Fast Tier and RAID 5/6 in the Lower Tier. RAID 10, RAID 5 and RAID 6 on the same set of drives (including SSDs), and depending on the “hotness” of the data, the location of the data blocks switched between the several RAID tiers in the Fast Tier. Over a longer period, the data blocks would relocate transparently to the Capacity Tier from the Fast Tier.

The Data Progression technology is extremely efficient. The movement of the data between the RAID Tiers and between the Performance/Capacity Tiers are in pages instead of blocks, making the write penalty and bandwidth to a negligible minimum.

The Storage Field Day 14 delegates were also privileged to be the first to get into the deep dive of the new All-Flash SC, just days of the announcement of the All-Flash SC. The All Flash SC redefines and refines the Data Progression to the next level. Among the new optimization, NAND Flash in the SC (both SLCs and MLCs, read-intensive and write-intensive) set the Data Progression default page size from 2MB to 512KB. These smaller 512KB pages enabled reduced bandwidth for tiering between the write-intensive and the read-intensive tier.

I didn’t get the latest SC family photos yet, but I managed to grab a screenshot of the announcement from The Register of the new DellEMC SC Series.

I was very encouraged with the DellEMC Midrange Storage presentation. Besides giving us a fantastic deep dive about the DellEMC SC All-Flash Storage, I was also very impressed by the candid and straightforward attitude of the team, led by their VP of Product Management, Pierluca Chiodelli. An EMC veteran, he was taking up the hard questions onslaught by the SFD14 delegate like a pro. His team’s demeanour was critical in instilling confidence and trust in how the bloggers and the analysts viewed Dell EMC merger, and how the SC and the Unity series would pan out in the technology roadmap.

Unlike the fiasco I went through with the DellEMC Forum 2017 in Malaysia, where I was disturbed with 3 calls in 3 consecutive days by DellEMC Malaysia, I was left with a profound respect for this DellEMC Storage team. They strongly supported their position within the DellEMC storage universe, and imparted their confidence in their technology solution in the marketplace.

Without a doubt, in my point of view, this DellEMC Mid-Range Storage team was the best I have enjoyed in Storage Field Day 14. Thank you.

Solid in the Fire

December 22 2015: I kept this blog in draft for 6 months. Now I am releasing it as NetApp acquires Solidfire.

真金不怕紅爐火

The above is an old Chinese adage which means “True Gold fears no Fire“. That is how I would describe my revisited view and assessment of SolidFire, a high performance All-Flash array vendor which is starting to make its presence felt in South Asia.

I first blogged about SolidFire 3 years ago, and I have been following the company closely as more and more All-Flash array players entered the market over the 3 years. Many rode on the hype and momentum of flash storage, and as a result, muddied and convoluted the storage infrastructure market understanding. It seems to me spin marketing ruled the day and users could not make a difference between vendor A and vendor B, and C and D, and so on….

I have been often asked, which is the best All-Flash array today. I have always hesitated to say which is the best because there aren’t much to say, except for 2-3 well entrenched vendors. Pure Storage and EMC XtremIO come to mind but the one that had stayed under the enterprise storage radar was SolidFire, until now.

SolidFire Logo

Continue reading

Don’t get too drunk on Hyper Converged

I hate the fact that I am bursting the big bubble brewing about Hyper Convergence (HC). I urge all to look past the hot air and hype frenzy that are going on, because in the end, the HC platforms have to be aligned and congruent to the organization’s data architecture and business plans.

The announcement of Gartner’s latest Magic Quadrant on Integrated Systems (read hyper convergence) has put Nutanix as the leader of the pack as of August 2015. Clearly, many of us get caught up because it is the “greatest feeling in the world”. However, this faux feeling is not reality because there are many factors that made the pack leaders in the Magic Quadrant (MQ).

Gartner MQ Integrated Systems Aug 2015

First of all, the MQ is about market perception. There is no doubt that the pack leaders in the Leaders Quadrant have earned their right to be there. Each company’s revenue, market share, gross margin, company’s profitability have helped put each as leaders in the pack. However, it is also measured by branding, marketing, market perception and acceptance and other intangible factors.

Secondly, VMware EVO: Rail has split the market when EMC has 3 HC solutions in VCE, ScaleIO and EVO: Rail. Cisco wanted to do their own HC piece in Whiptail (between the 2014 MQ and 2015 MQ reports), and closed down Whiptail when their new CEO came on board. NetApp chose EVO: Rail and also has the ever popular FlexPod. That is why you see that in this latest MQ report, NetApp and Cisco are interpreted independently whereas in last year’s report, it was Cisco/NetApp. Market forces changed, and perception changed.  Continue reading

The reverse wars – DAS vs NAS vs SAN

It has been quite an interesting 2 decades.

In the beginning (starting in the early to mid-90s), SAN (Storage Area Network) was the dominant architecture. DAS (Direct Attached Storage) was on the wane as the channel-like throughput of Fibre Channel protocol coupled by the million-device addressing of FC obliterated parallel SCSI, which was only able to handle 16 devices and throughput up to 80 (later on 160 and 320) MB/sec.

NAS, defined by CIFS/SMB and NFS protocols – was happily chugging along the 100 Mbit/sec network, and occasionally getting sucked into the arguments about why SAN was better than NAS. I was already heavily dipped into NFS, because I was pretty much a SunOS/Solaris bigot back then.

When I joined NetApp in Malaysia in 2000, that NAS-SAN wars were going on, waiting for me. NetApp (or Network Appliance as it was known then) was trying to grow beyond its dot-com roots, into the enterprise space and guys like EMC and HDS were frequently trying to put NetApp down.

It’s a toy”  was the most common jibe I got in regular engagements until EMC suddenly decided to attack Network Appliance directly with their EMC CLARiiON IP4700. EMC guys would fondly remember this as the “NetApp killer“. Continue reading