The openness of Novell Filr technology

In the previous blog entry, I spoke about finally getting the opportunity look deeper into Novell Filr technology. As I continue my journey of exploration, I am already consolidating information about the other EFSS (Enterprise File Synchronization and Sharing) solutions out there.

Many corporate IT users are moving away from pedantic corporate IT control toward the seemingly easy to synchronize, easy to share, cloud-based services such as Dropbox and Box.net. This practice exposes a big hole in the corporate network, leaking data and files, and yet most corporate IT users are completely ignorant about such a irresponsible act.

Corporate IT users cannot blame IT for being a big A-hole because they keep tight controls of the network and security. It is their job to safeguard the company’s data and files for security, compliance and privacy reasons.

In the past 9-12 months, IT has certainly relaxed (probably “relented” is a better word) their uptight demeanour because they know they couldn’t stop the onslaught of BYOD (bring your own devices). The C-level and the senior management have practically demanded it and had forced their way to bring in their own smart devices and tablets to increase their productivity (Yeah, right!).

To alleviate data security concerns, MDM (Mobile Device Management) solutions are now hot items on the IT shopping list. Since we are talking about Novell, I also got to know that Novell also has an MDM solution called ZenWorks Mobile Management. Novell Zenworks is already well integrated with the proven Novell track record of user and identity management as well as integration with LDAP authentication systems such as Active Directory and eDirectory.

The collision of the BYOD phenomena and the need to securely share corporate data and files security conceives the Enterprise File Synchronization and Sharing market. Continue reading

Time for Fujitsu Malaysia to twist and shout and yet …

The worldwide storage market is going through unprecedented change as it is making baby steps out of one of the longest recessions in history. We are not exactly out of the woods yet, given the Eurozone crisis, slowing growth in China and the little sputters in the US economy.

Back in early 2012, Fujitsu has shown good signs of taking market share in the enterprise storage but what happened to that? In the last 2 quarters, the server boys in the likes of HP, IBM and Dell storage market share have either shrunk (in the case of HP and Dell) or tanked (as in IBM). I would have expected Fujitsu to continue its impressive run and continue to capture more of the enterprise market, and yet it didn’t. Why?

I was given an Eternus storage technology update by the Fujitsu Malaysia pre-sales team more than a year ago. It has made some significant gains in technology such as Advanced Copy, Remote Copy, Thin Provisioning, and Eco-Mode, but I was unimpressed. The technology features were more like a follower, since every other storage vendor in town already has those features.

Continue reading

Is there no one to challenge EMC?

It’s been a busy, busy month for me.

And when the IDC Worldwide Quarterly Disk Storage Systems Tracker for 3Q12 came out last week, I was reading in awe how impressive EMC was at the figures that came out. But most impressive of all is how the storage market continue to grow despite very challenging and uncertain business conditions. With the Eurozone crisis, China experiencing lower economic growth numbers and the uncertainty in the US economic sectors, it is unbelievable that the storage market grew 24.4% y-o-y. And for the first time, 7,104PB was shipped! Yes folks, more than 7 exabytes was shipped during that period!

In the Top 5 external disk storage market based on revenue, only EMC and HDS recorded respectable growth, recording 8.7% and 13.8% respectively. NetApp, my “little engine that could” seems to be running out of steam, earning only 0.9% growth. The rest of the field, IBM and HP, recorded negative growth. Here’s a look at the Top 5 and the rest of the pack:

HP -11% decline is shocking to me, and given the woes after woes that HP has been experiencing, HP has not seen the bottom yet. Let’s hope that the new slew of HP storage products and technologies announced at HP Discover 2012 will lift them up. It also looked like a total rebranding of the HP storage products as well, with a big play on the word “Store”. They have names like StoreOnce, StoreServ, StoreAll, StoreVirtual, StoreEasy and perhaps more coming.

The Open SAN market, which includes iSCSI has EMC again at Number 1, with 29.8%, followed by IBM (14%), HDS (12.2%) and HP (11.8%). When combined with NAS numbers, the NAS + Open SAN market, EMC has 33.5% while NetApp is 13.7%.

Of course, it is just not about external storage because the direct-attached storage numbers count too. With that, the server vendors of IBM, HP and Dell are still placed behind EMC. Here’s a look at that table from IDC:

There’s a highlight of Dell in the table above. Dell actually grew by 4.0% compared to decline in HP and IBM, gaining 0.1%. However, their numbers seem too tepid and led to the exit of Darren Thomas, Dell’s storage group head honco. News of Darren’s exit was on TheRegister.

I also want to note that NAS growth numbers actually outpaced Open SAN numbers including iSCSI.

This leads me to say that there is a dire need for NAS technical and technology expertise in the local storage market. As the adoption of NFSv4 under way and SMB 2.0 and 3.0 coming into the picture, I urge all storage networking professionals who are more pro-SAN to step out of their comfort zone and look into NAS as well. The world is changing and it is no longer SAN vs NAS anymore. And NFSv4.1 is blurring the lines even more with the concepts of layout.

But back to the subject to storage market, is there no one out there challenging EMC in a big way? NetApp was, some years ago, recorded double digit growth and challenging EMC neck-and-neck, but that mantle seems to be taken over by HDS. But both are long way to go to get close to EMC.

Kudos to the EMC team for damn good execution!

Protogon File System

I was out shopping yesterday and I was tempted to have lunch at Bar-B-Q Plaza, a popular Thai, Japanese-style hot plate barbeque restaurant in this neck of the woods. The mascot of this restaurant is Bar-B-Gon, a dragon-like character and it is obviously a word play of barbeque and dragon.

As I was reading the news this morning about the upcoming Windows Server 8 launch, I found out that ever popular, often ridiculed NTFS (NT File System) of Windows will be going away. It will be replaced by Protogon, a codename for the new file system that Microsoft is about to release. Protogon? A word play of prototype and dragon?

The new file system, with backward compatibility with NTFS, will be called ReFS or Resilient File System. And the design objectives of what Microsoft calls “next generation” file system are clear and adept to the present day requirements. I notably mentioned present day requirements for a reason, because when I went through the key features of ReFS, the concepts and the ideas are not exactly “next generation“. Many of these features are already present with most storage vendors we know of, but perhaps for the people in the Windows world, these features might sound “next generation” to them.

ReFS, to me, is about time. NTFS has been around for a long, long time. It was first known in the wild in the 1993, and gain prominence and wide acceptance in Windows 2000 as the “enterprise-ready” file system. Indeed it was, because that was the time Microsoft Windows started its dominance into the data centers when the Unix vendors were still bickering about their version of open standards. Active Directory (AD) and NTFS were the 2 key technologies that slowly, but surely, removed Unix’s strengths in the data centers.

But over the years, as the storage networking technologies like SAN and NAS were developing and maturing, I see the NTFS being little developed to meet the strengths of these storage networking technologies and relevant protocols in the data world. When I did  a little bit of system administration on Windows (2000, 2003 notably), I could feel that NTFS was developed with direct-attached storage (DAS) or internal disks in mind. Definitely not full taking advantage of the strengths of Fibre Channel or iSCSI SAN. It was only in Windows Server 2008, that I felt Microsoft finally had enough pussyfooting with SAN and NAS, and introduced a more decent disk storage management that incorporates features that works well natively with SAN. Now, Microsoft can no longer sit quietly without acknowledging the need to build enterprise-ready technologies related to storage networking and data management. And the core in the new Microsoft Windows Server 8 engine for that is the ReFS.

One of the key technology objectives in the design of ReFS is backward compatibility. Windows has a huge market to address and they cannot just shove NTFS away. The way they did was to maintain the upper level API and file semantics and having a new core file system engine as shown in the diagram below:

ReFS is positioned with resiliency in mind. Here are a few resilient features:

  • Ability to isolate fault and perform data salvation on parts of the file system without taking the entire file system or volume offline. The goal of REFS here is to be ONLINE and serving data all the time!
  • Checksumming data and metadata for integrity. It verifies all data, and in some cases, auto-correcting corrupted data
  • Optional integrity streams that ensures protection for all forms of file-level data corruption. When enabled, whenever a file is changed, the modified copy is written to a different area of the disk than that of the original file. This way, even if the write operation is interrupted and the modified file is lost, the original file is still intact. (Doesn’t this sounds like COW with snapshots?) When combined with Storage Spaces (we will talk about this later), which can store a copy of all files in a storage array on more than one physical disk, ReFS gives Windows a way to automatically find and open an uncorrupted version of a file In the event that a file on one of the physical disks becomes corrupted. Microsoft does not recommend integrity streams for applications or systems with a specific type of storage layout or applications which want better control in the disk storage, for example databases.
  • Data scrubbing for latent disk errors. There is an tool, integrity.exe which runs and manages the data scrubbing and integrity policies. The file attribute, FILE_ATTRIBUTE_NO_SCRUB_DATA, will allow certain applications to skip this options and have these applications control integrity policies beyond what ReFS has to offer.
  • Shared storage pools across machines for additional fault tolerance and load balancing (ala Oracle RAC perhaps?)
  • Protection against bit rot. Silent data corruption, which I have blogged about many, many moons ago.

End-to-end resilient architecture is the goal in mind.

From a file structure standpoint, here’s how ReFS looks like:

ReFS is Copy-on-Write (COW). As you know, I am a big fan of any file systems but COW is one that I am most familiar with. NetApp’s Data ONTAP, Oracle Solaris, ZFS and the upcoming Linux BTRFS are all implementations of COW. Similar to BTRFS, ReFS uses a B+ tree implementation and as described in Wikipedia,

ReFS uses B+ trees for all on-disk structures including metadata and file data. The file size, total volume size, number of files in a directory and number of directories in a volume are limited by 64-bit numbers, which translates to maximum file size of 16 Exbibytes, maximum volume size of 1 Yobibyte (with 64 KB clusters), which allows large scalability with no practical limits on file and directory size (hardware restrictions still apply). Metadata and file data are organized into tables similar to relational database. Free space is counted by a hierarchal allocator which includes three separate tables for large, medium, and small chunks. File names and file paths are each limited to a 32 KB Unicode text string.

In ReFS, Microsoft introduces Storage Spaces. And the concept is very, very similar to what ZFS is, with the seamless implementation of a volume manager, RAID management, and highly resilient file system. And ZFS is 10 years old. So much for ReFS being “next generation“.  But here is a series of screenshots of how Storage Spaces looks like:

And similar to this “flexible volume management” ala ONTAP FlexVol and ZFS file systems, you can add disk drives on the fly, and grow your volumes online and real time.

ReFS inherits many of the NTFS features as it inches towards the Windows Server 8 launch date. Some of the features mentioned were the BitLocker encryption, Access Control List (ACL) for security (naturally), Symbolic Links, Volume Snapshots, File IDs and Opportunistic Locking (Oplocks).

ReFS is intended to scale to as what Microsoft says, “to extreme limits“. Here is a table describing those limits:

ReFS new technology will certainly bring Windows to the stringent availability and performance requirements of modern day file systems, but the storage networking world is also evolving into the cloud computing space. Object-based file systems are also getting involved as market trends dictate new requirements and file systems, in order to survive, must continue to evolve.

Microsoft’s file system, NTFS took a long time to come to this present version, ReFS, but can Microsoft continue to innovate to change the rules of the data storage game? We shall see …

Oracle Bested the Best in Quality

I have been an avid reader of SearchStorage Storage magazine for many years now and have been downloading their free PDF copy every month. Quietly snugged at the end of January 2012’s issue, there it was, the Storage magazine 6th annual Quality Awards for NAS.

I was pleasantly surprised with the results because in the previous annual awards, it would dominated by NetApp and EMC but this time around, a dark horse has emerged. It is Oracle who took top honours in both the Enterprise and the Mid-range categories.

The awards are the result of Storage Magazine’s survey and below is an excerpt about the survey:

 

In both categories covering the Enterprise and the Mid-Range, the overall ratings are shown below:

 

 

Surprised? You bet because I was.

The survey does not focus on speeds and feeds or comparing scalability or performance. Rather, the survey focuses on the qualitative aspects of the NAS products. There were many storage vendors who were part of the participation lists but many did not qualify to be make a dent of what the top 6 did. Here’s a list of the vendors surveyed:

 

The qualitative aspects of the survey focused on 5 main areas:

  • Sales force competency
  • Initial Quality
  • Product Features
  • Product Reliability
  • Technical Support

In each of the 5 main areas, customers were asked a series of questions. Here is a breakdown of those questions of each area.

Sales Force Competency

  1. Are the sales force knowledgeable about their products and their customer’s industries?
  2. How flexible are their sales effort?
  3. How good are they keeping the customer’s interest levels up?

Initial Product Quality

  1. Does the product need little or no vendor intervention?
  2. Ease of installation and ease of use
  3. Good value for money
  4. Reasonable requirement from Professional Service or needing little Professional Service
  5. Installation without defects
  6. Getting it right the first time

Product Features

  1. Storage management features
  2. Mirroring features
  3. Capacity scaling features
  4. Interoperable with other vendor’s products
  5. Remote replication features
  6. Snapshotting features

Product Reliability

  1. Vendor provide comprehensive upgrading procedures
  2. Ability to meet Service Level Agreement (SLA)
  3. Experiences very little downtime
  4. Patches applied non-disruptively

Technical Support

  1. Taking ownership of the customer’s problem
  2. Timely problem resolution and technical advice
  3. Documentation
  4. Vendor supplies support contractually as specified
  5. Vendor’s 3rd party partners are knowledgeable
  6. Vendor provide adequate training

These are some of the intangibles that customers are looking for when they qualify the NAS solutions from vendors. And the surprising was Oracle just became something to be reckoned with, backed by the strong legacy of customer-centric focus of Sun and StorageTek. If this is truly happening in the US, then kudos to Oracle for maximizing the Sun-Storagetek enterprise genes to put their NAS products to be best-of-breed.

However, on the local front, it seems to me that Oracle isn’t doing much justice to the human potential they have inherited from Sun. A little bird has told me that they got rid of some good customer service people in Malaysia and Singapore just last month and more could be on the way in 2012. All this for the sake of meeting some silly key performance indices (KPIs) of being measured by tasks per day.

The Sun people that I know here in Malaysia and Singapore are gurus who has gone through the fire and thrived and there is no substitute for quality. Unfortunately, in Oracle, it’s all about numbers, whether it is sales or tasks per day.

Well, back to the survey. And of course, the final question would be, “Is the product good enough that you would buy it again?” And the results are …

 

Good for Oracle in the US but the results do not fully reflect what’s on the ground here in Malaysia, which is more likely dominated by NetApp, HP, EMC and IBM.

Is there IOPS for Cloud Storage? – Nasuni style

I was in Singapore last week attending the Cloud Infrastructure Services course.

In the class, one of the foundation components of Cloud Computing is of course, storage. As the students and the instructor talked about Storage, one very interesting argument surfaced. It revolved around the storage, if it was offered on the cloud. A lot of people assumed that Cloud Storage would be for their databases, and their virtual machines, which of course, is true when the communication between the applications, virtual machines and databases are in the local area network of the Cloud Service Provider (CSP).

However, if the storage is offered through the cloud to applications that are sitting on-premise in the customer’s server room, then we have to think twice of how we perceive Cloud Storage. In this aspect, the Cloud Storage offered by the CSP is a Infrastructure-as-a-Service (IaaS), where the key service is Storage. We have to differentiate that this Storage functions as a data container, and usually not for I/O performance reasons.

Though this concept probably will be easily understood by storage professionals like us, this can cause a bit confusion for someone new to the concept of Cloud Computing and Cloud Storage. This confusion, unfortunately, is caused by many of us who are vendors or solution providers, or even publications and magazines. We are responsible to disseminate correct information to customers, but due to our lack of knowledge and experience in this extremely new market of Cloud Storage, we have created the FUDs (Fear, Uncertainty and Doubt) and hype.

Therefore, it is the duty of this blogger to clear the vapourware, and hopefully pass on the right information to accelerate  the adoption of Cloud Storage in the near future. At this moment, given the various factors such as network costs, high network latency and lack of key network technologies similar to LAN in Cloud Computing, Cloud Storage is, most of the time, for data storage containership and archiving only. And there are no IOPS or any performance related statistics related to Cloud Storage. If any engineer or vendor tells you that they have the fastest Cloud Storage in the industry, do me a favour. Give him/her a knock on the head for me!

Of course, as technologies evolve, this could change in the near future. For now, Cloud Storage is a container, NOT a high performance storage in the cloud. It is usually not meant for transactional data. There are many vendors in the Cloud Storage space from real CSPs to storage companies offering re-packaged storage boxes that are “cloud-ready”. A good example of a CSP offering Cloud Storage is Amazon S3 (Simple Storage Service). And storage vendors such as EMC and HDS are repackaging and rebranding their storage technologies as object storage, ready for the cloud. EMC Atmos is really a repackaged and rebranded Centera, with some slight modifications, while HDS , using their Archiving solution, has HCP (aka HCAP). There’s nothing wrong with what EMC and HDS have done, but before the overhyping of the world of Cloud Computing, these platforms were meant for immutable data archiving reasons. Just thought you should know.

One particular company that captured my imagination and addresses the storage performance portion is Nasuni. Of course, they are quite inventive with the Cloud Storage Gateway approach. Nasuni comes up with a Cloud Storage Gateway filer appliance, which can be either a physical 1U server or as a VMware or Hyper-V virtual appliance sitting on-premise at the customer’s site.

The key to this is “on-premise”, which allows access to data much faster because they are locally-cached in the Nasuni filer appliance itself. This Nasuni filer piece addresses the Cloud Storage “performance” piece but Nasuni do not claim any performance statistics with such implementation. The clever bit is that this addresses data or files that are transactional in nature, i.e. NFS or CIFS, to serve data or files “locally”. (I wonder if Nasuni filer has iSCSI as well. Hmmmm….)

In the Nasuni architecture, they “break up” their “Cloud Storage” into 2 pieces. Piece #1 sits on-premise, at the customer site, and acts as a bridge to the Piece #2, that is sitting in a Cloud Storage. From a simplified view, have a look at the diagram below:

 

 

Piece #1 is the component that handles some of the transactional traffic related to files. In a more technical diagram below, you can see that the Nasuni filer addresses the file sharing portion, using the local disks on the filer appliance as a local caching mechanism.

 

Furthermore, older file pieces are whiffed away to the any Cloud Storage using the Cloud Connector interface, hence giving the customer a sense that their storage capacity needs can be limitless if they want to (for a fee, of course). At the same time, the Nasuni filer support thin provisioning and snapshots. How cool is that!

The Cloud Storage piece (Piece #2) is used for the data container and archiving reasons. This component can be sitting and hosted at Amazon S3, Microsoft Azure, Rackspace Cloud Files, Nirvanix Storage Delivery Network and Iron Mountain Archive Services Platform.

The data communication and transfer between the Nasuni filer is secure, encrypted, deduplication and compressed, giving it the efficiency and security that most customers would be concerned about. The diagram below explains the dat communication and data transfer bit.

 

In this manner, the Nasuni filer can replace traditional NAS platforms and can potentially provide a much lower total cost of ownership (TCO) in the long run. Nasuni does not pretend to be a NAS replacement. To me, this concept is very inventive and could potentially change the way we perceive file sharing and file server, obscuring and blurring concept of NAS.

Again, I would like to reiterate that Nasuni does not attempt to say their solution is a NAS or a performance-based Cloud Storage but what they have cleverly packaged seems to be appealing to customers. Their customer base has grown 78% in Q2 of 2011. It’s just too bad they are not here in Malaysia or this part of the world (yet).

IOPS in Cloud Storage? Not yet.

 

Highroad to Parallel Road

Unless you are working with highly, parallelized access to files in a large scale-out NAS environment, you probably don’t get to work much with Parallel NFS (pNFS). pNFS is part of the NFSv4.1 (RFC 5661) standard, and was introduced in January 2010 to address NFS protocol in the clustered, scale-out NAS environment. It is to provide parallel file access across distributed servers.

pNFS is heavily driven by Panasas, NetApp, EMC, IBM, Sun (now Oracle) among others. And funnily enough, the company that sticks out from the bunch is one that used to tout block storage as the way to go, not files. That’s EMC, the company that more well known for its SAN solutions than its NAS (remember Celerra and IP4700?). And EMC has embraced pNFS in a big, big way. Read EMC’s CTO for Global Marketing, Chuck Hollis’ blog here and here.

However, unknown to many, a lot of the thinking that goes into pNFS are very similar to an EMC product some years ago. That product is EMC Highroad, which in the later years, renamed as Multi-path File System (MPFS).

Note: If you want to know more about the history of HighRoad/MPFS, read this blog.

The cornerstone of EMC MPFS is their File Mapping Protocol or FMP, which is a robust protocol that lines the mapping of files to their addressable blocks in storage. In a nutshell, when I was made responsible for this product during my time at EMC, I used to pitch to companies that MPFS was a file request is through NFS but respond to the requester can be in blocks (iSCSI or Fibre Channel). The beauty of this was, NFSv3 was chatty and heavy but the delivery of data through blocks via iSCSI or Fibre Channel has lesser overhead compared to NFSv3.

Hence the delivery is faster and EMC touted that the performance was 2-4x faster than NFS. Indeed, I have seen some lab tests results from EMC’s work with Schlumberger High Performance Lab in Houston, and the numbers were impressive. I still have them on Powerpoint somewhere.

In circa of 2003-2004, EMC donated the FMP code to IETF and as they say the rest was history.

The picture below basically summarizes what pNFS is all about.

 

A NFSv4 client will basically check with a Metadata server via the pNFS protocol about the layout of the distributed cluster of server. The file, could be striped across multiple nodes of the cluster, and it is the metadata server that provides a map to the client to access the blocks or files from these nodes. This is exactly what the EMC HighRoad/MPFS File Mapping Protocol (FMP) did, mapping the file requests to its respective corresponding blocks. See diagram below:

 

And one of the powerful feature of pNFS is that it is not just about NFS. The green arrow you see in the above diagram is the storage-access protocol. That access protocol can be NFSv4.1, CIFS, iSCSI, Fibre Channel, FCoE, Infiniband, and Object Storage Device (OSD).

In order to have pNFS working, the NFS client must be NFSv4.1 ready and that code has been made available in Linux and OpenSolaris. Other Unix vendors, no doubt, will be coming out with their NFSv4.1 implementation soon. Oooooh, there will be a Windows NFSv4.1 client coming as well!

But I want to dispel the notion that EMC is a SAN company. EMC is a very strong NAS company and if you have seen the IDC market share (ok, ok, many of you out there will argue about it), EMC is #1 in NAS. And their contribution to pNFS is immense.

Novell Filr (How do you pronounce this?)

I let you in on a little secret … I am a great admirer of Novell’s technology.

Ok, ok, they aren’t what they used to be anymore (remember the great heydays of Netware, ZenWorks and Groupwise?) And some of their business decisions didn’t make a lot of fans either. Some notable ones in recent years were the joint patent agreement with Microsoft (November 2006) and their ownership of Unix operating system rights. Though Novell did finally protected the Unix community by being the rightful owner of Unix OS rights, the negativity from the lawsuit and counter lawsuit between SCO and Novell soured the relationship with the faithfuls of Unix. In the end, they were acquired by Attachmate late last year.

However, I have been picking up bits of Novell technology knowledge for the past 3-4 years. Somehow, despite the negative perception that most people I know had about Novell, I strongly believe the ideas and thinking that goes into their solutions and products are smart and innovative.

So, when my buddy (and ex-housemate) of mine, Mr. Ong Tee Kok, the Country Manager of Novell Malaysia, asked me to evaluate a new solution from Novell (it’s not even been released yet), I jumped at the chance.

Novell will soon be announce a solution called Novell Filr. I really don’t know how to pronounce the name, but the concept of Novell Filr makes a lot of sense. I cannot say that it is disruptive but it is coming to meet the changing world of how users are storing and accessing their files and balancing it with the needs of enterprise file management and access.

Yes, Novell Filr is a file virtualization solution. It comes between the user and their files. Previously in a network attached environment, files are presented to the users via the typical file sharing protocols, CIFS for Windows and NFS for Unix/Linux. These protocols have been around for ages, with some recent advents in the last few years for SMB 2.0 and NFS version 4. However, the updates to these protocols address the greater needs of the organizations and the enterprise rather than the needs of the users.

And because of this, users have been flocking to cloud-centric solutions out there such as DropBox, Box.net and Windows Live SkyDrive. These solutions cater to the needs of the users wanting to access their files anywhere, with any device. Unfortunately, the simplicity of file access the “cloud-way” is not there when the users are in the office network. They would have to be routinely reminded by the system administrator to keep the files in some special directory to have their files backed up. Otherwise, they shall be ostracized by the IT department and their straying files will not be backed up.

Well, Novell will be introducing their Novell Filr soon and they have released a video of their solution. Check this out.

I shall be spending some time this week to look into their solution deeper and hoping to see a demo soon. And I have great confidence in the Novell solutions. I intend to share more about them later.

Storage Architects no longer required

I picked up a new article this afternoon from SearchStorage – titled “Enterprise storage trends: SSDs, capacity optimization, auto tiering“. I cannot help but notice some of the things I have been writing about VMware being the storage killer and the rise of Cloud Computing which take away our jobs.

I did receive some feedback about what I wrote in the past and after reading the SearchStorage article, I can’t help but feeling justified. On the side bar, it wrote:

 

The rise of virtual machine-specific and cloud storage suggest that other changes are imminent. In both cases …. and would no longer require storage architects and managers.

Things are changing at an extremely fast pace and for those of us still languishing in the realms of NAS and SAN, our expertise could be rendered obsolete pretty quickly.

But all is not lost because it would be easier for a storage engineer, who already has the foundation to move into the virtualization space than a server virtualization engineer coming down to learn about the storage fundamentals. We can either choose to be dinosaur or be the species of the next generation.

The rise of the specialized appliance

Compute and storage are 2 components within the IT infrastructure which are surely converging. SAN and NAS are facing their greatest adversary yet, and could be made insignificant if the cloud and virtualization game had their way. This is giving rise to the a new breed of solution, a specialized appliance where both compute and storage are ONE. Rising from the ashes of shared storage (SAN and NAS, take note), we are beginning to see things going back to way of direct, internal storage.

There were some scuffles in the bushes about 5 years, where Sun (now Oracle) was ahead of its game. The Sun Fire X4500 (aka Thumper) was one of the strong candidates to challenge the SAN/NAS duopoly in this networked storage period. X4500 integrated both the server and the storage components together, using ZFS as a file system and volume manager to deliver a very high throughput on all the JBOD disks very efficiently. ZFS acted as the RAID, so there was no need to have specialized RAID hardware. This proved that a very high performance storage solution can be easily integrated using standard off-the-shelf infrastructure components and the x86 architecture. By combining both compute and storage together, there were hints that the industry was about to rise up to Direct-Attached Storage (DAS) again, despite its perceived weakness against SAN and NAS.

Unfortunately, the applications were not ready for DAS then. Besides ZFS, applications such as databases, emails and file servers were not ready to jump into the DAS bandwagon and watch them ride into the sunset. But the fairy tale seems to be retold again, and this time, the evidence that DAS could rise again is much stronger.

The catalyst to this disruptive force? Virtualization!

I mentioned that VMware is the silent storage killer a few blogs ago. Needless to say, that ruffled a few featheres among the readers. I have no doubt that virtualization is changing how we storage guys look at SAN and NAS. In a traditional setup, the SAN or NAS is setup to provision LUNs or mount points to the data storage for VMFS volumes in the VMware environment. It will then be the storage array to provide snapshots, replications, thin provisioning and so on.

Perhaps VMware is nit picking that managing storage arrays for VMFS volumes is difficult. From the VMware administrators view, they are right. They don’t want to know what’s going on below the VM-level. All they want is storage, any kind of storage and VMware will manage the volumes, snapshots, replication and thin  provisioning. Indeed they were already doing that since vStorage API was introduced. In the new release of VMware version 5.0, the ante has been upped even higher, making networked storage less and less significant.

If you want to know about vStorage API and stuff, below is a diagram of the integration of the various components at the VMware API level.

 

VMware can now use direct, internal storage look like shared storage. The Virtual Storage Appliance (VSA) does just that. VMware already has a thriving market from the community and hobbists for VMware Appliances.

The appliance market has now evolved into new infrastructure too. Using x86 architecture, off-the-shelf infrastructure components (sounds familiar?), companies such as Nutanix and Tintri are taking advantage of this booming trend to introduce specialized VMware appliances as shown in their advertisements on their respective web sites.

Here’s the Nutanix Ad:

 

Here’s the Tintri Ad:

 

Both Tintri and Nutanix are a new breed of appliances – specialized appliances for VMware.

At the same time, other applications are building these specialized appliances as well. I have mentioned Oracle Exadata many times in the past and Oracle Exadata is the perfect example an a fine-tuned, hardcore database engine to make the Oracle run at the best performance possible.

Likewise HP has announced their E5000 Messaging System for Microsoft Exchange. The E5000 is a specialized appliance optimized and well-tuned for the Microsoft Exchange Server 2010. From the words of HP,

“HP E5000 Messaging System is the industry’s first fully self-contained platform built for the next-generation of Microsoft Exchange to deliver enterprise-class messaging to businesses of all sizes. Built as a turnkey solution that can be up and running in a few hours vs. days, the HP E5000 Messaging System gives business users the experience they want most: large mailboxes, centralized archiving of mailboxes files and 24×7 access from any device. IT staffs benefit the solutions simplicity to setup, scale and manage and to meet new demands affordably. Ideal for multi-site enterprises as well as branch office and remote office environments, each HP Messaging System delivers greater simplicity and accelerates deployment with preconfigured solutions starting at 500 mailboxes up to 3000 mailboxes, while delivering large, 1 to 2.5GB mailbox sizes. Clients can grow by adding storage capacity or more appliances within the environment up from hundreds to thousands of mailboxes.”

What are the specs of this E5000 box, you say? Here you go:

 

And look at Row#2 in the table above … Direct, Internal Disks! Look at Row #4, Xeon CPUs! Both Compute and Storage in the same appliance!

While the HP E5000 announcement was recently, Hitachi Data Systems were already in the game early with their Unified Compute Platform and their Converged Platform for Microsoft Exchange with relatively the same idea – specialized appliances.

Perhaps the HDS solutions aren’t exactly direct, internal storage but the concept is still the same – specialized appliance. HDS Unified Compute Platform (UCP) has these components.

 

HDS Converged Platform for MS Exchange provides their specialized “appliance” with Reference Architectures that can support up to 68,000 Microsoft Exchange mailboxes. Here’s an architecture diagram of their “appliance”

 

There’s no denying that the networked storage landscape is changing. So are the computing platforms. We are already seeing the compute and storage components being integrated together, tighter than ever. The wave is rising for specialized appliances and it can only get more intense from now on.

No wonder HP’s Converged Infrastructure vision is betting on x86 architecture, simple storage platforms with SAS/SATA disks and Virtualization. Other vendors are doing the same as well – Cisco, NetApp and VMware with their FlexPod solution and EMC with their VBlocks of VMware, Cisco and EMC Storage.

Hail to the Rise of the Specialized Appliance!