Disaggregation and Composability vital for AI/DL models to scale

New generations of applications and workloads like AI/DL (Artificial Intelligence/Deep Learning), and HPC (High Performance Computing) are breaking the seams of entrenched storage infrastructure models and frameworks. We cannot continue to scale-up or scale-out the storage infrastructure to meet these inundating fluctuating I/O demands. It is time to look at another storage architecture type of infrastructure technology – Composable Infrastructure Architecture.

Infrastructure is changing. The previous staid infrastructure architecture parts of compute, network and storage have long been thrown of the window, precipitated by the rise of x86 server virtualization almost 20 years now. It triggered a tsunami of virtualizing everything, including storage virtualization, which eventually found a more current nomenclature – Software Defined Storage. Both storage virtualization and software defined storage (SDS) are similar and yet different and should be revered through different contexts and similar goals. This Tech Target article laid out both nicely.

As virtualization raged on, converged infrastructure (CI) which evolved into hyperconverged infrastructure (HCI) went fever pitch for a while. Companies like Maxta, Pivot3, Atlantis, are pretty much gone, with HPE® Simplivity and Cisco® Hyperflex occasionally blipped in my radar. In a market that matured very fast, HCI is now dominated by Nutanix™ and VMware®, with smaller Microsoft®, Dell EMC® following them.

From HCI, the attention of virtualization has shifted something more granular, more scalable in containerization. Despite a degree of complexity, containerization is taking agility and scalability to the next level. Kubernetes, Dockers are now mainstay nomenclature of infrastructure engineers and DevOps. So what is driving composable infrastructure? Have we reached the end of virtualization? Not really.

Evolution of infrastructure. Source: IDC

It is just that one part of the infrastructure landscape is changing. This new generation of AI/ML workloads are flipping the coin to the other side of virtualization. As we see the diagram above, IDC brought this mindset change to get us to Think Composability, the next phase of Infrastructure.

Continue reading

Stating the case for a Storage Appliance approach

I was in Indonesia last week to meet with iXsystems™‘ partner PT Maha Data Solusi. I had the wonderful opportunity to meet with many people there and one interesting and often-replayed question arose. Why aren’t iX doing software-defined-storage (SDS)? It was a very obvious and deliberate question.

After all, iX is already providing the free use of the open source TrueNAS® CORE software that runs on many x86 systems as an SDS solution and yet commercially, iX sell the TrueNAS® storage appliances.

This argument between a storage appliance model and a storage storage only model has been debated for more than a decade, and it does come into my conversations on and off. I finally want to address this here, with my own views and opinions. And I want to inform that I am open to both models, because as a storage consultant, both have their pros and cons, advantages and disadvantages. Up front I gravitate to the storage appliance model, and here’s why.

My story of the storage appliance begins …

Back in the 90s, most of my work was on Fibre Channel and NFS. iSCSI has not existed yet (iSCSI was ratified in 2003). It was almost exclusively on the Sun Microsystems® enterprise storage with Sun’s software resell of the Veritas® software suite that included the Sun Volume Manager (VxVM), Veritas® Filesystem (VxFS), Veritas® Replication (VxVR) and Veritas® Cluster Server (VCS). I didn’t do much Veritas® NetBackup (NBU) although I was trained at Veritas® in Boston in July 1997 (I remembered that 2 weeks’ trip fondly). It was just over 2 months after Veritas® acquired OpenVision. Backup Plus was the NetBackup.

Between 1998-1999, I spent a lot of time working Sun NFS servers. The prevalent networking speed at that time was 100Mbits/sec. And I remember having this argument with a Sun partner engineer by the name of Wong Teck Seng. Teck Seng was an inquisitive fella (still is) and he was raving about this purpose-built NFS server he knew about and he shared his experience with me. I detracted him, brushing aside his always-on tech orgasm, and did not find great things about a NAS storage appliance. Auspex™ was big then, and I knew of them.

I joined NetApp® as Malaysia’s employee #2. It was an odd few months working with a storage appliance but after a couple of months, I started to understand and appreciate the philosophy. The storage Appliance Model made sense to me, even through these days.

Continue reading

As Disk Drive capacity gets larger (and larger), the resilient Filesystem matters

I just got home from the wonderful iXsystems™ Sales Summit in Knoxville, Tennessee. The key highlight was to christian the opening of iXsystems™ Maryville facility, the key operations center that will house iX engineering, support and part of marketing as well. News of this can be found here.

iX datacenter in the new Maryville facility

Western Digital® has always been a big advocate of iX, and at the Summit, they shared their hard disk drives HDD, solid state drives SSD, and other storage platforms roadmaps. I felt like a kid a candy store because I love all these excitements in the disk drive industry. Who says HDDs are going to be usurped by SSDs?

Several other disk drive manufacturers, including Western Digital®, have announced larger capacity drives. Here are some news of each vendor in recent months

Other than the AFR (annualized failure rates) numbers published by Backblaze every quarter, the Capacity factor has always been a measurement of high interest in the storage industry.

Continue reading

Nakivo Backup Replication architecture and installation on TrueNAS – Part 1

Backup and Replication software have received strong mandates in organizations with enterprise mindsets and vision. But lower down the rung, small medium organizations are less invested in backup and replication software. These organizations know full well that they must backup, replicate and protect their servers, physical and virtual, and also new workloads in the clouds, given the threat of security breaches and ransomware is looming larger and larger all the time. But many are often put off by the cost of implementing and deploying a Backup and Replication software.

So I explored one of the lesser known backup and recovery software called Nakivo® Backup and Replication (NBR) and took the opportunity to build a backup and replication appliance in my homelab with TrueNAS®. My objective was to create a cost effective option for small medium organizations to enjoy enterprise-grade protection and recovery without the hefty price tag.

This blog, Part 1, writes about the architecture overview of Nakivo® and the installation of the NBR software in TrueNAS® to bake in and create the concept of a backup and replication appliance. Part 2, in a future blog post, will cover the administrative and operations usage of NBR.

Continue reading

A conceptual distributed enterprise HCI with open source software

Cloud computing has changed everything, at least at the infrastructure level. Kubernetes is changing everything as well, at the application level. Enterprises are attracted by tenets of cloud computing and thus, cloud adoption has escalated. But it does not have to be a zero-sum game. Hybrid computing can give enterprises a balanced choice, and they can take advantage of the best of both worlds.

Open Source has changed everything too because organizations now has a choice to balance their costs and expenditures with top enterprise-grade software. The challenge is what can organizations do to put these pieces together using open source software? Integration of open source infrastructure software and applications can be complex and costly.

The next version of HCI

Hyperconverged Infrastructure (HCI) also changed the game. Integration of compute, network and storage became easier, more seamless and less costly when HCI entered the market. Wrapped with a single control plane, the HCI management component can orchestrate VM (virtual machine) resources without much friction. That was HCI 1.0.

But HCI 1.0 was challenged, because several key components of its architecture were based on DAS (direct attached) storage. Scaling storage from a capacity point of view was limited by storage components attached to the HCI architecture. Some storage vendors decided to be creative and created dHCI (disaggregated HCI). If you break down the components one by one, in my opinion, dHCI is just a SAN (storage area network) to HCI. Maybe this should be HCI 1.5.

A new version of an HCI architecture is swimming in as Angelfish

Kubernetes came into the HCI picture in recent years. Without the weights and dependencies of VMs and DAS at the HCI server layer, lightweight containers orchestrated, mostly by, Kubernetes, made distribution of compute easier. From on-premises to cloud and in between, compute resources can easily spun up or down anywhere.

Continue reading

How well do you know your data and the storage platform that processes the data

Last week was consumed by many conversations on this topic. I was quite jaded, really. Unfortunately many still take a very simplistic view of all the storage technology, or should I say over-marketing of the storage technology. So much so that the end users make incredible assumptions of the benefits of a storage array or software defined storage platform or even cloud storage. And too often caveats of turning on a feature and tuning a configuration to the max are discarded or neglected. Regards for good storage and data management best practices? What’s that?

I share some of my thoughts handling conversations like these and try to set the right expectations rather than overhype a feature or a function in the data storage services.

Complex data networks and the storage services that serve it

I/O Characteristics

Applications and workloads (A&W) read and write from the data storage services platforms. These could be local DAS (direct access storage), network storage arrays in SAN and NAS, and now objects, or from cloud storage services. Regardless of structured or unstructured data, different A&Ws have different behavioural I/O patterns in accessing data from storage. Therefore storage has to be configured at best to match these patterns, so that it can perform optimally for these A&Ws. Without going into deep details, here are a few to think about:

  • Random and Sequential patterns
  • Block sizes of these A&Ws ranging from typically 4K to 1024K.
  • Causal effects of synchronous and asynchronous I/Os to and from the storage

Continue reading

The burgeoning world of NVMe

When I wrote this article “Let’s smoke this storage peace pipe” 5 years ago, I quoted:

NVMe® and NVM®eF‰, as it evolves, can become the Great Peacemaker and bringing both divides and uniting them into a single storage fabric.

I envisioned NVMe® and NVMe®oF™ setting the equilibrium at the storage architecture level, finishing the great storage fabric into one. This balance in the storage ecosystem at the storage interface specifications and language-protocol level has rapidly unifying storage today, and we are already seeing the end-to-end NVMe paths directly from the PCIe bus of one host to another, via networks over Ethernet (with RoCE, iWARP, and TCP flavours) and Fibre Channel™. Technically we can have an end point device, example a tablet, talking the same NVMe language to its embedded storage as well as a cloud NVMe storage in an exascale storage far, far away. In the past, there were just too many bridges, links, viaducts, aqueducts, bypasses, tunnels, flyovers to cross just to deliver a storage command, or a data in a formats, encased and encoded (and decoded) in so many different ways.

Colours in equilibrium, like the rainbow

Simple basics of NVMe®

SATA (Serial Attached ATA) and SAS (Serial Attached SCSI) are not optimized for solid state devices. besides legacy stuff like AHCI (Advanced Host Controller Interface) in SATA, and archaic SCSI-3 primitives in SAS, NVM® has so much to offer. It can achieve very high bandwidth and support 65,535 I/O queues, each with a queue depth of 65,535. The queue depth alone is a massive jump compared to SAS which has a queue depth limit of 256.

A big part of this is how NVMe® handles I/O processing. It has a submission queue (SQ) and a completion queue (CQ), and together they are know as a Queue Pair (QP). The NVMe® controller handles tens of thousands at I/Os (reads and writes) simultaneously, alerted to switch between each SQ and CQ very quickly using the MSI or MSI-X interrupt. Think of MSI and MSI-X as a service bell, a hardware register that informs the NVM® controller when there are requests in the SQ, and informs the hosts that there are completed requests in the CQ. There will be plenty of “dings” by the MSI-X service register but the NVMe® controller can perform it very well, with some smart interrupt coalescing.

NVMe I/O processing

NVMe® 1.1, as I recalled, used to be have 3 admin commands and 10 base commands, which made it very lightweight compared to SCSI-3. However, newer commands were added to NVMe® 2.0 specifications included command sets fo key-value operations and zoned named space.

Continue reading

Storage Elephant Compute Birds

Data movement is expensive. Not just costs, but also latency and resources as well. Thus there were many narratives to move compute closer to where the data is stored because moving compute is definitely more economical than moving data. I borrowed the analogy of the 2 animals from some old NetApp® slides which depicted storage as the elephant, and compute as birds. It was the perfect analogy, because the storage is heavy and compute is light.

“Close up of a white Great Egret perching on top of an African Elephant aa Amboseli national park, Kenya”

Before the animals representation came about I used to use the term “Data locality, Data Mobility“, because of past work on storage technology in the Oil & Gas subsurface data management pipeline.

Take stock of your data movement

I had recent conversations with an end user who has been paying a lot of dollars keeping their “backup” and “archive” in AWS Glacier. The S3 storage is cheap enough to hold several petabytes of data for years, because the IT folks said that the data in AWS Glacier are for “backup” and “archive”. I put both words in quotes because they were termed as “backup” and “archive” because of their enterprise practice. However, the face of their business is changing. They are in manufacturing, oil and gas downstream, and the definitions of “backup” and “archive” data has changed.

For one, there is a strong demand for reusing the past data for various reasons and these datasets have to be recalled from their cloud storage. Secondly, their data movement activities still mimicked what they did in the past during their enterprise storage days. It was a classic lift-and-shift when they moved to the cloud, and not taking stock of  their data movements and the operations they ran on these datasets. Still ongoing, their monthly AWS cost a bomb.

Continue reading

Open Source Storage Technology Crafters

The conversation often starts with a challenge. “What’s so great about open source storage technology?

For the casual end users of storage systems, regardless of SAN (definitely not Fibre Channel) or NAS on-premises, or getting “files” from the personal cloud storage like Dropbox, OneDrive et al., there is a strong presumption that open source storage technology is cheap and flaky. This is not helped with the diet of consumer brands of NAS in the market, where the price is cheap, but the storage offering with capabilities, reliability and performance are found to be wanting. Thus this notion floats its way to the business and enterprise users, and often ended up with a negative perception of open source storage technology.

Highway Signpost with Open Source wording

Storage Assemblers

Anybody can “build” a storage system with open source storage software. Put the software together with any commodity x86 server, and it can function with the basic storage services. Most open source storage software can do the job pretty well. However, once the completed storage technology is put together, can it do the job well enough to serve a business critical end user? I have plenty of sob stories from end users I have spoken to in these many years in the industry related to so-called “enterprise” storage vendors. I wrote a few blogs in the past that related to these sad situations:

We have such storage offerings rigged with cybersecurity risks and holes too. In a recent Unit 42 report, 250,000 NAS devices are vulnerable and exposed to the public Internet. The brands in question are mentioned in the report.

I would categorize these as storage assemblers.

Continue reading