Technology prowess of Riverbed SteelFusion

The Riverbed SteelFusion (aka Granite) impressed me the moment it was introduced to me 2 years ago. I remembered that genius light bulb moment well, in December 2012 to be exact, and it had left its mark on me. Like I said last week in my previous blog, the SteelFusion technology is unique in the industry so far and has differentiated itself from its WAN optimization competitors.

To further understand the ability of Riverbed SteelFusion, a deeper inspection of the technology is essential. I am fortunate to be given the opportunity to learn more about SteelFusion’s technology and here I am, sharing what I have learned.

What does the technology of SteelFusion do?

Riverbed SteelFusion takes SAN volumes from supported storage vendors in the central datacenter and projects the storage volumes (aka LUNs)to applications and hosts at the remote branches. The technology requires a paired relationship between SteelFusion Core (in the centralized datacenter) and SteelFusion Edge (at the branch). Both SteelFusion Core and Edge are fronted respectively by the Riverbed SteelHead WAN optimization device, to deliver the performance required.

The diagram below gives an overview of how the entire SteelFusion network architecture is like:

Riverbed SteelFusion Overall Solution 2 Continue reading

SMB on steroids but CIFS lord isn’t pleased

I admit it!

I am one of the guilty parties who continues to use CIFS (Common Internet File System) to represent the Windows file sharing protocol. And a lot of vendors continue to use the “CIFS” word loosely without knowing that it was a something from a bygone era. One of my friends even pronounced it as “See Fist“, which sounded even funnier when he said it. (This is for you Adrian M!)

And we couldn’t be more wrong because we shouldn’t be using the CIFS word anymore. It is so 90’s man! And the tell-tale signs have already been there but most of us chose to ignore it with gusto. But a recent SNIA Webinar titled “SMB 3.0 – New opportunities for Windows Environment” aims to dispel our incompetence and change our CIFS-venture to the correct word – SMB (Server Message Block).

A selfie photo of Dennis Chapman, Senior Technical Director for Microsoft Solutions at NetApp from the SNIA webinar slides above, wants to inform all of us that … SMB History Continue reading

Novell Filr about to be revealed

My training engagement landed me in Manila this week. At the back of my mind is Novell Filr, first revealed to me a week ago by my buddy at Novell Malaysia. After almost 18 months since I first wrote about it, Novell Filr is about to be revealed in my blog within this month. And it has come at an opportune time, because the enterprise BYOD/file synchronization market is about to take off.

Gartner defines this market as Enterprise File Synchronization and Sharing (EFSS) and it is already a very crowded market given the popularity of Dropbox,, Sugarsync and many, many others. It is definitely a market that is coveted by many but mastered by a few. There are just too many pretenders and too few real players.

The proliferation of smart phones and tablets and other mobile devices has opened up a burgeoning need to have data everywhere. The wonderfulness of having data right at the fingertips every time they are wanted give rise to the need of wanting business and corporate data to be available as well. The power of having data instantly at the swipe of our fingers on the touchscreen is akin us feeling like God, giving life to our communication and us making opportunities come alive at the very moment. Continue reading

“Cloud” hosting hacked – customer data lost

Yes, Yes, I have been inactive for almost 2 months. There were many things I had to do to put my business back into shape again, and hence my lack of activities in my blog.

Yes, Yes, I have a lot of catching up to do, but first I would like to report that one of the more prominent web hosting companies (many of who frequently brand themselves as “Cloud” companies) in Malaysia have been hacked.

I got the news at about 8.00am on September 28th morning and I was in Bangalore, India. Friend of mine buzzed me on Facebook Messenger, and shared with me the following:

Thursday, September 27, 2012 1:46 AM
Date: 27th Sep 2012
Time: 6.01PM GMT +0800

We have an intrusion incident that happened early this morning around 12midnight of 27th September 2012. About 50 customers’ Virtual Machines hosted on our CLOUD were deleted from the cloud server. When we spotted the abnormal behavior, we managed to stop the intruder from causing more damages to our system.

From our initial investigation, we suspect one of our employees who will leave the company at this month end logged into one of our control panels and deleted some Virtual Machines. The backup was terminated at the same time when the Virtual Machines were deleted.

At this point of time, our team is working relentlessly on restoring the affected virtual machines and customer data.

In the mean time, my COO is lodging a police report and my manager is lodging a report to MyCERT while I am writing this email.

We are truly sorry about the whole incident as it has caused a great deal of inconvenience to our customers and their end customers as well.

Please also be rest assured that our CLOUD is truly secured; this incident was not a successful hacking attempt but rather sabotage via an ordinary login.

Detailed investigation reports will be compiled and sent to our customers.


Chan Kee Siak
Founder and CEO

Summary / History of issues:
27th Sep 2012,

- We detected several virtual machines on the cloud were throwing warning signals.
- Technical Managers were immediately informed.

- We found out that an intruder was attempting to delete some of the virtual machines on our CLOUD cluster.
- The intruder was using a valid login to access our CLOUD control panel.
- COO was informed, signed in to co-ordinate.
- The access of the intruder has been disabled to prevent further damage.
- We posted an announcement at:

- CEO was informed.
- We found out that the intruder was using the login ID and password which belonged to one of the staff members whom we had recently sent out termination notice. The last working day of this staff was end of this month.
- Around 50++ Virtual Machines / VPS were affected.
- We started to inform affected customers.

- Rebuild and restoration of virtual machines began.

- Some Virtual Machines were Restored. The rest were still pending, on going.
- For Virtual machines without extra R1Soft Backup, we have recreated blank virtual machines with Operating System.

- Attempted to recover the deleted backup on the CLOUD Backup server via data recovery tool. No guarantee and no ETA yet, we were doing our very best.

- 80% of virtual machines were recreated. However, some were without the latest backup of data.
- Our engineers were attempting to recover the Cloud Backup Hard Drive with the use of recovery tool. However, as the size was huge, it might take few more hours.

- The CLOUD Accounts, Virtual Machines and CLOUD Backup of affected clients were deleted. Only client with additional R1Soft backup still has the recent backup.


Date: 27th September 2012
Time: 1:55 AM GMT+8

Maintenance Details:
We have been alert by our monitoring system that certain Cloud VM has been found to be inaccessible. Our senior admin engineers are now working to resolve the issues.

Maintenance effect:
VMs affected isolated under MY-CLOUD-02 Zone.

We regret for any inconveniences caused.

Best regards,

Support team
Technical Support Department.

Continue reading

4TB disks – the end of RAID

Seriously? 4 freaking terabyte disk drives?

The enterprise SATA/SAS disks have just grown larger, up to 4TB now. Just a few days ago, Hitachi boasted the shipment of the first 4TB HDD, the 7,200 RPM Ultrastar™ 7K4000 Enterprise-Class Hard Drive.

And just weeks ago, Seagate touted their Heat-Assisted Magnetic Recording (HAMR) technology will bring forth the 6TB hard disk drives in the near future, and 60TB HDDs not far in the horizon. 60TB is a lot of capacity but a big, big nightmare for disks availability and data backup. My NetApp Malaysia friend joked that the RAID reconstruction of 60TB HDDs would probably finish by the time his daughter finishes college, and his daughter is still in primary school!.

But the joke reflects something very serious we are facing as the capacity of the HDDs is forever growing into something that could be unmanageable if the traditional implementation of RAID does not change to meet such monstrous capacity.

Yes, RAID has changed since 1988 as every vendor approaches RAID differently. NetApp was always about RAID-4 and later RAID-DP and I remembered the days when EMC had a RAID-S. There was even a vendor in the past who marketed RAID-7 but it was proprietary and wasn’t an industry standard. But fundamentally, RAID did not change in a revolutionary way and continued to withstand the ever ballooning capacities (and pressures) of the HDDs. RAID-6 was introduced when the first 1TB HDDs first came out, to address the risk of a possible second disk failure in a parity-based RAID like RAID-4 or RAID-5. But today, the 4TB HDDs could be the last straw that will break the camel’s back, or in this case, RAID’s back.

RAID-5 obviously is dead. Even RAID-6 might be considered insufficient now. Having a 3rd parity drive (3P) is an option and the only commercial technology that I know of which has 3 parity drives support is ZFS. But having 3P will cause additional overhead in performance and usable capacity. Will the fickle customer ever accept such inadequate factors?

Note that 3P is not RAID-7. RAID-7 is a trademark of a old company called Storage Computer Corporation and RAID-7 is not a standard definition of RAID.

One of the biggest concerns is rebuild times. If a 4TB HDD fails, the average rebuild speed could take days. The failure of a second HDD could up the rebuild times to a week or so … and there is vulnerability when the disks are being rebuilt.

There are a lot of talks about declustered RAID, and I think it is about time we learn about this RAID technology. At the same time, we should demand this technology before we even consider buying storage arrays with 4TB hard disk drives!

I have said this before. I am still trying to wrap my head around declustered RAID. So I invite the gurus on this matter to comment on this concept, but I am giving my understanding on the subject of declustered RAID.

Panasas‘ founder, Dr. Garth Gibson is one of the people who proposed RAID declustering way back in 1999. He is a true visionary.

One of the issues of traditional RAID today is that we still treat the hard disk component in a RAID domain as a whole device. Traditional RAID is designed to protect whole disks with block-level redundancy.  An array of disks is treated as a RAID group, or protection domain, that can tolerate one or more failures and still recover a failed disk by the redundancy encoded on other drives. The RAID recovery requires reading all the surviving blocks on the other disks in the RAID group to recompute blocks lost on the failed disk. In short, the recovery, in the event of a disk failure, is on the whole object and therefore, a entire 4TB HDD has to be recovered. This is not good.

The concept of RAID declustering is to break away from the whole device idea. Apply RAID at a more granular scale. IBM GPFS works with logical tracks and RAID is applied at the logical track level. Here’s an overview of how is compares to the traditional RAID:

The logical tracks are spread out algorithmically spread out across all physical HDDs and the RAID protection layer is applied at the track level, not at the HDD device level. So, when a disk actually fails, the RAID rebuild is applied at the track level. This significant improves the rebuild times of the failed device, and does not affect the performance of the entire RAID volume much. The diagram below shows the declustered RAID’s time and performance impact when compared to a traditional RAID:

While the IBM GPFS approach to declustered RAID is applied at a semi-device level, the future is leaning towards OSD. OSD or object storage device is the next generation of storage and I blogged about it some time back. Panasas is the leader when it comes to OSD and their radical approach to this is applying RAID at the object level. They call this Object RAID.

With object RAID, data protection occurs at the file-level. The Panasas system integrates the file system and data protection to provide novel, robust data protection for the file system.  Each file is divided into chunks that are stored in different objects on different storage devices (OSD).  File data is written into those container objects using a RAID algorithm to produce redundant data specific to that file.  If any object is damaged for whatever reason, the system can recompute the lost object(s) using redundant information in other objects that store the rest of the file.

The above was a quote from the blog of Brent Welch, Panasas’ Director of Software Architecture. As mentioned, the RAID protection of the objects in the OSD architecture in Panasas occurs at file-level, and the file or files constitute the object. Therefore, the recovery domain in Object RAID is at the file level, confining the risk and damage of data loss within the file level and not at the entire device level. Consequently, the speed of recovery is much, much faster, even for 4TB HDDs.

Reliability is the key objective here. Without reliability, there is no availability. Without availability, there is no performance factors to consider. Therefore, the system’s reliability is paramount when it comes to having the data protected. RAID has been the guardian all these years. It’s time to have a revolutionary approach to safeguard the reliability and ensure data availability.

So, how many vendors can claim they have declustered RAID?

Panasas is a big YES, and they apply their intelligence in large HPC (high performance computing) environments. Their technology is tried and tested. IBM GPFS is another. But where are the rest?


Amazon makes it easy

I like the way Amazon is building their Cloud Computing services. Amazon Web Services (AWS) is certainly on track to become the most powerful Cloud Computing company in the world. In fact, AWS might already is.  But they are certainly not resting on their laurels when they launched 2 new services in as many weeks – Amazon DynamoDB (last week) and Amazon Storage Gateway (this week).

I am particularly interested in the Amazon Storage Gateway, because it is addressing one of the biggest fears of Cloud Computing head-on. A lot of large corporations are still adamant to keep their data on-premise where it is private and secure. Many large corporations are still very skeptical about it even though Cloud Computing is changing the IT landscape in a massive way. The barrier to entry for large corporations is not something easy, but Amazon is adapting to get more IT divisions and departments to try out Cloud Computing in a less disruptive way.

The new service, is really about data storage and data backup for large corporations. This is important because large corporations have plenty of requirements for data storage and data to be backed up. And as we know, a large portion of the data stored does not need to be transactional or to be accessed frequently. This set of data is usually less frequently used, for archiving or regulatory compliance reasons, particular in the banking and healthcare industry.

In the data backup operations, the reason data is backed up is to provide a data recovery mechanism when a disaster strikes. Large corporations back up tons of data every day, weeks or month and this data only has value when there is a situation that requires data relevance, data immediacy or data recovery. Otherwise, it is just plenty of data taking up storage space, be it on disk or on tape.

Both data storage and data backup cost a lot of money, both CAPEX and OPEX. In CAPEX, you are constantly pressured to buy more storage to store the ever growing data. This leads to greater management and administration costs, both contributing heavily into OPEX costs. And I have not included the OPEX costs of floor space, power and cooling, people (training, salary, time and so on) typically adding up to 3-5x the operations costs relative to the capital investments. Such a model of IT operations related to storage cannot continue forever, and storage in the Cloud offers an alternative.

These 2 scenarios – data storage and data backup – are exactly the type of market AWS is targeting. In order to simplify and pacify large corporations, AWS introduced the Amazon Storage Gateway, that eases the large corporations to take some of their IT storage operations to the Cloud in the form of Amazon S3.

The video below shows the Amazon Storage Gateway:

The Amazon Storage Gateway is a piece of software “appliance” that is installed on-premise in the large corporation’s data center. It seamlessly integrates into the LAN and provides a SSL (Secure Socket Layer) connection to the Amazon S3. The data being transferred to the S3 is also encrypted with AES (Advanced Encryption Standard) 256-bit. Both SSL and AES-256 can give customers a sense of security and AWS claims that the implementation meets the data storage and data recovery standards used in the banking and healthcare industries.

The data storage and backup service regularly protects the customer’s data in snapshots, and giving the customer a rapid recovery platform should the customer experienced on-premise data corruption or data disruption. At the same time, the snapshot copies in the Amazon S3 can also be uploaded into Amazon EBS (Elastic Block Store) and testing or development environments can be evaluated and testing with Amazon EC2 (Elastic Compute Cloud). The simplicity of sharing and combining different Amazon services will no doubt, give customers a peace of mind, easing their adoption of Cloud Computing with AWS.

This new service starts with a 60-day free trial and moving on to a USD$125.00 (about Malaysian Ringgit $400.00) per gateway per month subscription fee. The data storage (inclusive of the backup service), costs only 14 cents per gigabyte per month. For 1TB of data, that is approximately MYR$450 per month. Therefore, minus the initial setup costs, that comes to a total of MYR$850 per month, slightly over MYR$10,000 per year.

At this point, I like to relate an experience I had a year ago when implementing a so-called private cloud for an oil-and-gas customers in KL. They were using the HP EVS (Electronic Vaulting Service) to an undisclosed HP data center hosting site in the Klang Valley. The HP EVS, which was an OEM of Asigra, was not an easy solution to implement but what was more perplexing was the fact that the customer had a poor understanding of what would be the objectives and their 5-year plan in keeping with the data protected.

When the first 3-4TB data storage and backup were almost used up, the customer asked for a quotation for an additional 1TB of the EVS solution. The subscription for 1TB was MYR$70,000 per year. That is 7x time more than the AWS MYR$10,000 per year cost! I have to salute the HP sales rep. It must have been a damn good convincing sell!

In the long run, the customer could be better off running their storage and backup on-premise with their HP EVA4400 and adding an additional of 1TB (and hiring another IT administrator) would have cost a whole lot less.

Amazon Web Services has already operating in Singapore for the past 2 years, and I am sure they are eyeing Malaysia as their regional market. Unless and until Malaysian companies offering Cloud Services know to use economies-of-scale to capitalize the Cloud Computing market, AWS is always going to be a big threat to CSP companies in Malaysia and a boon of any companies seeking cloud computing services anywhere in the world.

I urge customers in Malaysia to start questioning their so-called Cloud Service Providers if they can do what AWS is doing. I have low confidence of what the most local “cloud computing” companies can deliver right now. I hope they stop window dressing their service offerings and start giving real cloud computing services to customers. And for customers, you must continue to research and find out more which cloud services meet your business objectives. Don’t be flashed by the fancy jargons or technical idealism thrown at you. Always, always find out more because your business cost is at stake. Don’t be like the customer who paid MYR$70,000 for 1TB per year.

AWS is always innovating and the Amazon Storage Gateway is just another easy-to-adopt step in their quest for world domination.

Storage must go on a diet

Nowadays, the capacity of the hard disk drives (HDDs) are really big. 3TB is out and 4TB is in the horizon. What’s next?

For small-medium businesses in Malaysia, depending on their data requirements and applications, 3-10TB is pretty sufficient  and with room to grow as well. Therefore, a 6TB requirement can be easily satisfied with 2 x 3TB HDDs.

If I were the customer, why would I buy a storage array, with the software licenses and other stuff that will not only increase my cost of equipment acquisition and data management, it will also increase the complexity of my IT infrastructure? I could just slot HDDs into my existing server, RAID it with RAID-0 (not a good idea but to save costs, most customers would do that) and I have a 6TB volume! It’s cheaper, easier to manage with Windows or Linux, and my system administrator doesn’t have to fuss about lack of storage experience.

And RAID isn’t really keeping up with the tremendous growth of HDD’s capacity as well. In fact, RAID is at risk. RAID (especially RAID 5/6) just cannot continue provide the LUN or volume reliability and data availability because it just takes too damn long to rebuild the volume after the failure of a disk.

Back in the days where HDDs were less than 500GB, RAID-5 would still hold up but after passing the 1TB mark, RAID-6 became more prevalent. But now, that 1TB has ballooned to 3TB and RAID-6 is on shaky ground. What’s next? RAID-7? ZFS has RAID-Z3, triple parity but come on, how many vendors have that? With triple parity or stronger RAID (is there one?), the price of the storage array is going to get too costly.

Experts have been speaking about parity-declustering,  but that’s something that a few vendors have right now. Panasas, founded by one of forefathers of RAID, Garth Gibson, comes to mind. In fact, Garth Gibson and Mark Holland of Cargenie-Mellon University’s Parallel Data Lab (PDL) presented a paper about parity-declustering more than 10 years ago.

Let’s get back to our storage fatty. Yes, our storage is getting fat, obese, rotund or whatever you want to call it. And storage vendors have been pushing a concept in hope that storage administrators and customers can take advantage of it. It is called Storage Optimization or Storage Efficiency.

Here are a few ways you can consider to put your storage on a diet.

  • Compression
  • Thin Provisioning
  • Deduplication
  • Storage Tiering
  • Tapes and SSDs

To me, compression has not taken the storage world by storm. But then again, there aren’t many vendors that tout compression as a feature for storage optimization. Most of them rather prefer to push the darling of data reduction, data deduplication, as the main feature for save more space. Theoretically, data deduplication makes more sense when the data is inactive, and has high occurrence of duplicated data. That is why secondary storage such  as backup deduplication targets like Data Domain, HP StoreOnce, Quantum DXi can publish 20:1 rates and over time, that rate can get even higher.

NetApp also has been pushing their A-SIS data deduplication on primary storage. Yes, it helps with the storage savings in primary but when the need for higher data transfer rates and time to access “manipulated” data (deduped or compressed), it is likely that compression is a better choice for primary, active data.

So who has compression? NetApp ONTAP 8.0.1 has compression now and IBM with its Storewize V7000 started as a compression device. Read about IBM Storewize in my blog here. Dell has Ocarina Networks, which was recently unleashed. I am a big fan of Ocarina Networks and I wrote about the technology in my previous blog. EMC, during the Celerra days of DART has compression but I don’t hear much about it in their VNX. Compression is there, believe me, embedded all the loads of EMC marketing.

Thin Provisioning is now a must-have and standard feature of all storage vendors. What is Thin Provisioning? The diagram below shows you:

In the past, storage systems aren’t so intelligent. You ask for 10TB, you are given 10TB and that 10TB is “deducted” from the storage capacity. That leads to wastage and storage inefficiencies. Today, Thin Provisioning will give you 10TB but storage capacity is consumed as it is being used. The capacity is not pre-allocated as in the past. Thin provisioning is a great diet pill for bloated storage projects. 

Another up and coming feature is storage tiering. Storage tiering, when associated to storage optimization, should include hierarchical storage management (HSM) and tape-out as well. Storage optimization solutions should not offer only in the storage array itself. Storage tiering within the storage array is available with most vendors – IBM EasyTier, EMC FAST2, Dell Fluid Data Management and many others. But what about data being moved out of the storage array? What about reducing the capacity of the data online or near-line? Why not put them offline if there isn’t a need for it?

I term this as Active Archiving, something I learned while I was at EMC. Here’s a look at EMC’s style of Active Archiving:

Active Archiving promotes the concept of data archiving and is not unique only to EMC. Almost all storage vendors, either natively or with 3rd party vendors, can perform fairly efficient data archiving in one way or another. One of the software that I liked (and not unique!) is Quantum Stornext. Here’s a video of how Quantum Stornext helps reduce the fat of the storage.

With the single-copy sharing feature of Quantum Stornext to multiple disparate OSes, there are lesser duplicate files in storage as well.

Tapes have been getting a bad name in the past few years. It has been repositioned and repurposed as an archive medium rather than a backup medium. But tape is the greenest and most powerful storage diet pill around. And we should not be discount tapes because tapes are fighting back. Pretty soon you will be hearing about Linear Tape File System (LTFS). In a nutshell, Linear Tape File System (LTFS) allows you to use the tape almost as if it were a hard disk. You can drag and drop files from your server to the tape, see the list of saved files using a standard operating system directory (no backup software catalog needed), and use point and click to restore. How cool is that!

And Solid State Drives (SSDs) makes sense as well.

There are times that we need IOPS and using spinning drives, we have to set up many disk spindles to achieve the IOPS that we want.  For example, using the diagram below from the godfather of storage, Greg Schulz,

The set of 16 spinning HDD drives on the left can only deliver 3,520 IOPS. The problem is, we have wasted a lot of disk space, as seen in the diagram below. This design, which most customer would be accustomed to, may look cheaper but in actual fact, is NOT.

If the price of a Fibre Channel HDD is RM2,000, the total of 16 would make up RM32,000.00. That is not inclusive of additional power and cooling and rack space and also the data management costs. Assuming the SSDs costs 5 times more than the Fibre Channel HDD. SSDs are capable of delivering very high IOPS. Here I am putting a modest 5,000 IOPS per SSDs. With just 2 SSDs (as the right design suggests), the total costs is only RM20,000. It has greater performance room to grow, and also savings in data management, power and cooling.

Folks, consider SSDs as part of your storage diet plan.

All these features are available, in whole or in part, and they are part of the storage technology offerings that is out there. With all these being said, are you doing something about it? Get off your lazy bum and start managing your storage and put your storage on a diet!!!

Atempo – 3 gals, 1 guy and 1 LB handbag

I have known Atempo for years and even contacted them once when I was in NetApp several years ago. I don’t know much about them until a friend recently took up the master resellership of Atempo here in Malaysia. And when people ask me “Atempo who?”, I would reply “3 gals, 1 guy and 1 LB handbag”.

Atempo, is a company that specializes in data protection and archiving solutions and has been around for almost 20 years. They compete with Symantec Netbackup, Commvault Simpana and Bakbone Netvault and I have seen their solutions. It’s pretty decent and with an attractive price as well. Perhaps they don’t market themselves as strongly as some the bigger data protection companies, but I would recommend to anyone, any day. If you need more information, contact me.

But the usual puzzled faces will soon go away once they start recognizing Atempo’s solutions because that is where my usual Atempo introduction comes from – their solutions.

Atempo has 5 key products

  • Time Navigator (TINA)
  • Live Navigator (LINA)
  • Atempo Digital Archive (ADA)
  • Atempo Digital Archive for Messaging (ADAM)
  • Live Backup (LB)
Wow, with a cool one like ADAM, 3 hotties in TINA, LINA and ADA, plus LV, err, I mean LB,what more can you ask for?So, before you get into kinky ideas (a foursome?), Atempo is attempting (pun intended ;-)), to take up of your mindshare when it comes to data backup and data archiving.
I am planning to find out more about Atempo in the coming months. Things have been hectic for me but my good buddy now the master reseller of Atempo in Malaysia will make sure that I focus on Atempo more.
Later – guy, gals and a nice handbag. :D

HP StoreOnce – Further Depth

I promised last week I will look deeper into HP StoreOnce technology and I did. As I mentioned in my previous blog, HP StoreOnce technology now embedded in its D2D series of secondary, target backup devices that does the job with no fuss and no fancy bells and whistles.

Here’s the lineup of the present HP D2D solutions.


HP Malaysia has constantly reminded me that their D2D deduplication solution is much more price competitive than their competitors and this is something you, the readers, have to find out on your own. But I do believe that they are. Unfortunately they did not have the first mover’s advantage when Data Domain took the industry by storm in 2009, since HP StoreOnce was only launched with much fanfare last year in June 2010. Despite that, there still plenty of room in the IT market to grow, especially in HP’s huge set of customers.

Without the first movers advantage, HP StoreOnce has to differentiate itself from the existing competitors such as EMC Data Domain and Quantum. Labeling their deduplication technology as version 2.0 (whereas the competitors are still at “Version 1.0″?), HP StoreOnce banks on 3 key technologies. They are

  • Sparse Indexing
  • Intelligent Block Size Management
  • Reduction in Disk Fragmentation

Out of these 3, sparse indexing is the most interesting but I will save the best from last. Let’s start with Intelligent Block Size Management.

HP StoreOnce uses a variable chunking method with a smaller granularity of 4K in size and this is managed intelligently, thus achieving a higher deduplication ratio compared to its competitors which either uses a fixed chunking method or with a variable chunking method of larger block sizes in the range of 8K to 32K. The HP Lab’s testing reveals that the space savings was significant when compared with others.

Below are a set of results for a PowerPoint presentation and you can see for yourself.


(NOTE: Please note that the savings/deduplication ratio can be very different and can range from good to bad for different types of data. Video and images files are highly encoded. Seismic and geo-mapping files are highly compressed. It is very likely that most deduplication solutions cannot achieve a high percentage with these types of files)

Point #2 talks about Reduction in Disk Fragmentation. The inherent benefits from Intelligent Block Size Management brings about the Reduction in Disk Fragmentation. The smaller chunks means lesser space wastage, especially when the block size is 4K or lower. HP StoreOnce also uses an intelligent algorithm to place the blocks that are perceived to be related close to one another. Hence this “locality” presence helps and the retrieval and restore process will be faster and more efficient.

Sparse Indexing is where HP StoreOnce touts to be a game changer. Today’s data is already as massive as a mountain, and it’s going to get bigger and growing faster. Using “Version 1.0″ type of deduplication, the hashes created are stored in either memory or on disks. However, the massive data sets (especially unstructured data) are already producing massive amounts of hashes. Hashes are used to identify unique data blocks but the avalanche of unstructured data means that most deduplication solutions are generating more and more hashes, making most Version 1.0s hashes sluggish and difficult to retrieve.

Sparse Indexing addresses this hash problem (by the way, HP StoreOnce uses SHA-1 hash) by intelligently sampling a small chunks and creating a very fast index lookup mechanism that stays in the system’s memory all the time. As the engineers at HP Labs put it

Instead of holding every index item in RAM ready for comparison,
the HP team keeps just one in every hundred or so items in RAM
and puts the rest onto a hard drive. Duplicate data almost
always arrives in bursts. In other words, if one chunk of the
arriving stream is a duplicate, it is very likely that many
following chunks are duplicates. Sparse indexing takes advantage
of this phenomenon by storing the sequence of hashes of the
stored chunks next to each other on disk. As a result, a ‘hit’
in the sample RAM index can direct the system to an area of
the disk where many duplicates are likely to be found.

Sparse Indexing is not unique in the industry, but the engineers at HP Labs have put their thinking hats on and applied it to improve the search and looking up of the hashes in the StoreOnce deduplication technology.

Further savings are also achieved when the deduped data is compressed with the LZ (Lempel-Ziv) compression method before it is stored into the disks.

The HP StoreOnce technology is 100% fully concocted in the renown HP Labs and according to sources, this technology will indeed permeate across all HP StorageWorks (HP has since renamed it to HP Storage) line. With this strategy, HP hopes to address the “fragmented and complicated” (as quoted by HP) deduplication and data protection strategy across the enterprise. By “fragmented and complicated”, they mean that the deduplicated data constant has to be rehydrated and deduped again as the data moves across different IT devices and functions.

In a perfect world, HP wants their StoreOnce technology to be like the diagram below.


However, one very interesting fact that I found was HP does not believe that primary storage deduplication is a good idea. They claim that it complicates the whole thing. Whether HP likes it or not, NetApp has been dishing out primary storage deduplication for several years now and you don’t see their customers unhappy with NetApp about this feature.

In one of the HP Business whitepapers I read, one of the takeaways was


I was like, “Whoa! What’s this?”. I felt bemused about what was mentioned in the whitepaper. After all the best claims of the HP StoreOnce technology, I can’t help but to think that this could be a banana skin on the pavement for HP.

Snapshots? Don’t have a C-O-W about it!

Unfortunately, I am having a COW about it!

Snapshots are the inherent offspring of the copy-on-write technique used in shadow-paging filesystems. NetApp’s WAFL and Oracle Solaris ZFS are commercial implementations of shadow-paging filesystems and they are typically promoted as Copy-on-Write filesystems.

As we may already know, snapshots are point-in-time copy of the active file system in the storage world. They perform quick backup of the active file system by making a copy of the block addresses (pointers) of the filesystem and then updating the pointer maps to the inodes in the fsinfo root inode of the WAFL filesystem for new changes after the snapshot has been taken. The equivalent of fsinfo is the uberblock in the ZFS filesystem.

However, contrary to popular belief, the snapshots from WAFL and ZFS are not copy-on-write implementations even though the shadow paging filesystem tree employs the copy-on-write technique.

Consider this for a while when a snapshot is being taken … Copy —- On —- Write. If the definition is (1) Copy then (2) Write, this means that there are several several steps to perform a copy-on-write snapshot. The filesystem has to to make a copy of the original data block (1 x Read I/O), then write the original data block to a new location (1 x Write I/O) and then write the new data block to the location of the original data block (1 x Write I/O).

This is a 3-step process that can be summarized as

  1. Read location of original data block (1 x Read I/O)
  2. Copy this data block to new unused location (1 x Write I/O)
  3. Write the new and modified data block to the location of original data block (1 x Write I/O)

This implementation, IS THE copy-on-write technique for snapshot but NetApp and possibly Oracle guys have been saying for years that their snapshots are based on copy-on-write. This is pretty much a misnomer that needs to be corrected. EMC, in its SnapSure and SnapView implementation, called this technique Copy-on-First-Write (COFW), probably to avoid the confusion. The data blocks are copied to a savvol, a separate location to store the changes of snapshots and defaults to 10% of the total capacity of their storage solutions.

As you have seen, this method is a 3 x I/O operation and it is an expensive solution. Therefore, when we compare the speed of NetApp/ZFS snapshots to EMC’s snapshots, the EMC COFW snapshot technique will be a tad slower.

However, this method has one superior advantage over the NetApp/ZFS snapshot technique. The data blocks in the active filesystem are almost always laid out in a more contiguous fashion, resulting in a more consistent read performance throughout the life of the active file system.

Below is a diagram of how copy-on-write snapshots are implemented:


What is NetApp/ZFS’s snapshot method then?

It is is known as Redirect-on-Write. Using the same step … REDIRECT —- ON —– WRITE. When a data block is about to be modified, the original data block is read (1 x Read I/O) and then the data block is written to a new location (1 x Write I/O). The active file system then updates the filesystem tree and its inode address to reflect the location of the new data block. The original data block remained unchanged.

In summary,

  1. Read location of original data block (1 x Read I/O)
  2. Write modified data block to new location (1 x Write I/O)

The Redirect-on-Write method resulted in 1 Write I/O less, making snapshot creation faster. This is the NetApp/ZFS method and it is superior when compared to the Copy-on-Write snapshot technique discussed earlier.

However, as the life of the filesystem progresses, fragmentation and holes will cause the performance of the active filesystem to degrade. The reason is most related data blocks are no longer contiguous and the active file system will be busy seeking the scattered data blocks across the volume. Fragmented filesystem would have to be “cleaned and reorganized” to regain its performance lustre.

Another unwanted problem using the Redirect-on-Write snapshot technique is the snapshot resides in the same boundary as the active filesystem. Over time, if the capacity consumed by the snapshots could overwhelm the active filesystem, if their recycle schedule is unchecked.

I guess this is a case of “SUFFER NOW/ENJOY LATER” or “ENJOY NOW/SUFFER LATER”. We have to make a conscious effort to understand what snapshots are all about.