Do we still need FAST (and its cohorts)?

In a recent conversation with an iXsystems™ reseller in Hong Kong, the topic of Storage Tiering was brought up. We went about our banter and I brought up the inter-array tiering and the intra-array tiering piece.

After that conversation, I started thinking a lot about intra-array tiering, where data blocks within the storage array were moved between fast and slow storage media. The general policy was simple. Find all the least frequently access blocks and move them from a fast tier like the SSD tier, to a slower tier like the spinning drives with different RPM speeds. And then promote the data blocks to the faster media when accessed frequently. Of course, there were other variables in the mix besides storage media and speeds.

My mind raced back 10 years or more to my first encounter with Compellent and 3PAR. Both were still independent companies then, and I had my first taste of intra-array tiering

The original Compellent and 3PAR logos

I couldn’t recall which encounter I had first, but I remembered the time of both events were close. I was at Impact Business Solutions in their office listening to their Compellent pitch. The Kuching boys (thank you Chyr and Winston!) were very passionate in evangelizing the Compellent Data Progression technology.

At about the same time, I was invited by PTC Singapore GM at the time, Ken Chua to grace their new Malaysian office and listen to their latest storage vendor partnership, 3PAR. I have known Ken through my NetApp® days, and he linked me up Nathan Boeger, 3PAR’s pre-sales consultant. 3PAR had their Adaptive Optimization (AO) disk tiering and Dynamic Optimization (DO) technology.

Continue reading

Dell EMC Isilon is an Emmy winner!

[ Disclosure: I was invited by GestaltIT as a delegate to their Storage Field Day 19 event from Jan 22-24, 2020 in the Silicon Valley USA. My expenses, travel, accommodation and conference fees were covered by GestaltIT, the organizer and I was not obligated to blog or promote the vendors’ technologies presented at this event. The content of this blog is of my own opinions and views ]

And the Emmy® goes to …

Yes, the Emmy® goes to Dell EMC Isilon! It was indeed a well deserved accolade and an honour!

Dell EMC Isilon had just won the Technology & Engineering Emmy® Awards a week before Storage Field Day 19, for their outstanding pioneering work on the NAS platform tiering technology of media and broadcasting content according to business value.

A lasting true clustered NAS

This is not a blog to praise Isilon but one that instill respect to a real true clustered, scale-out file system. I have known of OneFS for a long time, but never really took the opportunity to really put my hands on it since 2006 (there is a story). So here is a look at history …

Back in early to mid-2000, there was a lot of talks about large scale NAS. There were several players in the nascent scaling NAS market. NetApp was the filer king, with several competitors such as Polyserve, Ibrix, Spinnaker, Panasas and the young upstart Isilon. There were also Procom, BlueArc and NetApp’s predecessor Auspex. By the second half of the 2000 decade, the market consolidated and most of these NAS players were acquired.

Continue reading

Is Dell Fluid Enough?

Dell made a huge splash 2 weeks ago in London in their inaugural Dell Storage Forum. They dubbed their storage and management lineup as “Fluid Data Architecture” offering the ability for customers to quickly adapt and automate their business when it comes to storage networking and more importantly, data management.

In the London show, they showcased several key innovations and product development. Here’s a list of their jewels:

  • DR4000 – an inline, content optimized backup deduplication appliance (based on the acquired technology of Ocarina Networks)
  • Compellent Storage Center 6.0 – a major software release
  • Compellent key technology integration with VMware
  • Optimized object storage for Microsoft Sharepoint with the DX6000 Object Storage Platform – DX6000 is an OEM from Caringo
  • Broader support for Dell Force10, PowerConnect and their partner’s Brocade

The technology from Ocarina Networks is fantastic technology and I have always admired Ocarina. I have written about Ocarina in the past in my previous blog. But I was a bit perplexed why Dell chose to enter the secondary dedupe market with a backup dedupe appliance in the DR4000. They are already a latecomer into the secondary deduplication game and I thought HP was already late with their StoreOnce.

They could have used Ocarina’s technology to trailblaze the primary deduplication market. In my previous blog, I mentioned that primary deduplication hasn’t really taken off in a big way, and Dell with the technology from Ocarina could set the standard and establish themselves as the leader of the primary deduplication market space. I was disappointed that they didn’t, not just yet.

The Compellent Storage Center 6.0 release was a major release and it was, for better or for worse, coincided with the departure of Phil Soran, the founder and CEO of Compellent. Phil felt that he can let his baby go and Dell is certainly making the best of what they can do with Compellent as their flagship data storage product.

The major release included 64-bit support for greater performance and scalability and also include several key VMware technologies that other vendors already have. The technologies included:

  • VMware vStorage API for Array Integration (VAAI)
  • Storage Replication Adapter plug-in for VMware Site Recovery Manager (SRM)
  • VSphere 5 client plug-in
  • Integration of Enterprise Manager and VSphere

Other storage related releases (I am not going to talk about Force10 or their PowerConnect solutions here) included Dell offering 16Gbps FibreChannel switches from Brocade and also their DX6000 Object Storage Platform optimized for Microsoft Sharepoint.

I think it is fantastic that Dell is adapting and evolving into a business-oriented, enterprise solution provider and their acquisitions in the past 3 years – EqualLogic, Exanet, Ocarina Networks, Force10 and Compellent – proves that Dell aims to take market share in the storage networking and data management market. They have key initiatives with CommVault, Symantec, VMware and Microsoft as well. And Michael Dell is becoming quite a celebrity lately, giving Dell the boost it needs to battle in this market.

But the question is, “Is their Fluid Data Architecture” fluid enough?” If I were a customer, would I bite?

As a customer, I look for completeness in the total solution, and I cannot fault Dell for having most of the pieces in the solution stack. They have networking in their PowerConnect, Force10 and Brocade. They have SAN in both Compellent and EqualLogic but their unified storage story is still a bit lacking. That’s because we have not seen Dell’s NAS storage yet. Exanet was a scale-out NAS and we have seen little rah-rah about this product.

From a data management perspective, their data protection story gels well with the Commvault and Symantec partnership, but I feel that Dell sales and SEs (at least in Malaysia) spends too much time touting the Compellent Automated Storage Tiering. I have spoken to folks who have listened to Dell guys’ pitches and it’s too one-dimensional. It’s always about storage tiering and little else about other Compellent technology.

At this point of time, the story that Dell sells here in Malaysia is still disjointed, but they are getting better. And eventually, the fluidity (pun intended ;-)) of their Fluid Data Architecture will soon improve.

How will Dell fare in 2012? They had taken a beating in the past 2 IDC’s quarter storage market tracker, losing some percentage points in market share but I think Dell will continue to tinker to get it right.

2012 will be their watershed year.

Storage Tiering – Responsible and Prudent

Does your IT have bottomless budget? If not, storage tiering is likely to be considered as one of IT’s weapons to combat the ever growing need for storage capacity.

Storage tiering is not new and in the past, features such as HSM (Hierarchical Storage Management) and ILM (Information Lifecycle Management) addresses storage tiering in different capacities, ranging for simple aging files movement and migration, to data objects being moved within the data infrastructure of an organization with some kind of workflow and searching capabilities.

Lately, storage tiering, and especially automated storage tiering, has been gaining prominence, thanks to the 2 high profile acquisitions – HP 3PAR and Dell Compellent. According to Wikibon,

Tiered storage is a system of assigning applications to different
types of storage media based on application requirements. Factors
considered in the allocation of storage type include the level of
protection needed, performance requirements, speed of recovery,
and many other considerations.Since assigning application data to
specific media may be complex, some vendors provide software for
automatically managing the process.

For the sake of simplicity, this blog talks about automated storage tiering within the storage array itself, where different data blocks are moved within several tiers to achieve just-right storage provisioning. Why do we need to achieve this “just-right provisioning”? Rather than discussing this from an IT, technical angle, the just-right storage provisioning should be addressed from a business and operational angle, and more rightly so, costs and benefits.

Business and operations are about managing costs and increasing profits. In the past, many storage administrators employ a single storage tier architecture. Using the same type of disks, for example, 146G 10,000RPM Fibre Channel disks, there was usually 1 or 2 RAID levels for the entire data storage requirement. Usually RAID 1+0 volumes/LUNs are for the applications that require the highest performance and availability but they come with a big cost. So, the rest of the data are kept in RAID-5 volumes/LUNs. The introduction of enterprise SATA hard disk drives basically changed the rules of the ball game, giving storage administrators another option, a cheaper alternative to store their data. Obviously, storage vendors saw the great need to address this requirement, and hence created automated storage tiering as part of their offerings.

There are quite a few storage solutions that offers the storage tiering feature, and most of them are automated as well, meaning that the data blocks are moved between the different tiers of storage within the array itself automatically. 3PAR, long before they were acquired by HP, had their Dynamic Autonomic Tiering. Today, with HP, 3PAR offers 2 key strengths in their Autonomic Tiering offering.

  • Adaptive Optimization
  • Dynamic Optimization

As HP puts it,

 

Not to be outdone, Compellent (also long before its acquisition by Dell) had the Data Progression feature as part of the Automated Storage Tiering offering. In a nutshell, their solution (which is basically similar from a 10,000 feet view with most of the competitors) is shown below.

 

The idea is to put the most frequently accessed data blocks to the most expensive, fastest, storage tier and then dynamically move the lesser accessed data block to the least expensive, most economical tier.

I have had the privilege to learn more about Compellent (before Dell) technology about 2.5 years ago, thanks to my friends Chyr and Winston, the bosses at Impact Business Solutions. And what Compellent has was pretty cool stuff and I would like to share what I have picked up about Dell Compellent storage solution. But some of the information could be a little out of date.

The foundation of Dell Compellent automated storage tiering feature, called Data Progression, is their Dynamic Block Architecture (as shown below)

 

From a high level, all data blocks are bunched together into a logical data structure called a page. A page is by default 2MB but can be configured between 512KB and 4MB. The page is the granular unit required to initiate and implement the Data Progression feature in Compellent’s automated storage tiering solution. Every page comes with attached metadata about the page such as

  • When was this page created
  • When was this page last accessed
  • Which RAID level is it currently in (RAID 1+0, RAID-59, RAID-55 and so on)
  • Which Tier does it currently reside (Tier 1, 2 or 3)
  • Which kind of disk track does it live in (Fast or Standard)

Meanwhile, there are different storage Tiers and notably, Tier 1, 2 or 3 where different disk profiles reside. Typically, the SSDs or the 15K RPM disk drives will be in Tier 1, the 10K RPM disk drives will be in Tier 2 and the slowest 7200 RPM disks will be in Tier 3.  Each of the 3 tiers are further divided into the outer Fast disk cylinders (where the platters spin the fastest) and the Standard disk cylinders (running in the inner tracks and slower).

As data chunks or blocks are accessed, their frequency of access and their data movement statistics are gathered in real-time, giving the Compellent solution a fairly good intelligence of how the pages should be laid out on the most relevant tiers. As the pages become more stale, and less relevant, the pages of data chunks are progressively relegated to the lower tiers, while the more active, and most relevant pages relative to importance of access, is progressively promoted to the higher tiers.

Different policies can also be configured to ensure that some important pages stay where they are regardless of their frequency of access or their relevance.

There is a very nice whitepaper from Dell detailing their Data Progression technology.

Another big automated storage tiering player is HP 3PAR. I admit that I don’t know the inner details of the HP 3PAR Dynamic Tiering solution, though I had some glossy lessons from a 3PAR Systems Engineer called Nathan Boeger (thanks to my friends at PTC Singapore, the 3PAR distributor back then) about the same time I learned about Dell Compellent. I hope HP can offer to introduce more in depth of how the 3PAR technology works, now that I have gotten cosy with some of the HP Malaysia’s folks.

Similarly, the other big boys are offering the automated storage tiering solution as well. IBM has been offering Easy Tier for almost 18 months and EMC has its FAST2 for about the same time.

Funnily, the odd one out in this automated storage tiering game is NetApp. I was in a partner conference call about 1 year ago and there were questions asking NetApp about their views of automated storage tiering. At that time of the concall, NetApp did not believe in automated storage tiering, preferring to market their FlashCache PCIe (previously called the PAM card) solution. Take note that the FlashCache is a Read-Only “extension” to their NVRAM, and used to accelerate read operations of WAFL. And also take note that NetApp, at the time of writing, does not have an “engine” that performs automated storage tiering, regardless of how they spin it.

There are also host-based file tiering solutions as well.Since I am familiar with the NetApp universe, Arkivio and Enigma Data Solutions are 2 of the main partners that NetApp works with. Recently NetApp also resells StorNext from Quantum. But note that these host-based solutions are file-based, making them less granular, less dynamic and less efficient. They are usually marketed as file archiving solutions, and the host-based license are usually charged by per TB. In large enterprises, this might make sense but for the everyday Joes (with tight IT budgets), host-based file archiving solutions are expensive. And it is nowhere close to the efficiencies of automated storage tiering.

Overall, automated storage tiering, when applied, should help the IT operations and the organization’s business reduce costs. There is no longer a one-size-fit-all model and associating the right storage tier to the relevance and importance of the data at a very granular sub-LUN/sub-volume level will help any organization define a more prudent approach in managing their data actively and more importantly their cost of operations.

This is called Responsible IT. 😀