Down the rabbit hole with Kubernetes Storage

Kubernetes is on fire. Last week VMware® released the State of Kubernetes 2020 report which surveyed companies with 1,000 employees and above. Results were not surprising as the adoptions of this nascent technology are booming. But persistent storage remained the nagging concern for the Kubernetes serving the infrastructure resources to applications instances running in the containers of a pod in a cluster.

The standardization of storage resources have settled with CSI (Container Storage Interface). Storage vendors have almost, kind of, sort of agreed that the API objects such as PersistentVolumes, PersistentVolumeClaims, StorageClasses, along with the parameters would be the way to request the storage resources from the Pre-provisioned Volumes via the CSI driver plug-in. There are already more than 50 vendor specific CSI drivers in Github.

Kubernetes and CSI initiative

Kubernetes and the CSI (Container Storage Interface) logos

The CSI plug-in method is the only way for Kubernetes to scale and keep its dynamic, loadable storage resource integration with external 3rd party vendors, all clamouring to grab a piece of this burgeoning demands both in the cloud and in the enterprise.

Continue reading

Dell EMC Isilon is an Emmy winner!

[ Disclosure: I was invited by GestaltIT as a delegate to their Storage Field Day 19 event from Jan 22-24, 2020 in the Silicon Valley USA. My expenses, travel, accommodation and conference fees were covered by GestaltIT, the organizer and I was not obligated to blog or promote the vendors’ technologies presented at this event. The content of this blog is of my own opinions and views ]

And the Emmy® goes to …

Yes, the Emmy® goes to Dell EMC Isilon! It was indeed a well deserved accolade and an honour!

Dell EMC Isilon had just won the Technology & Engineering Emmy® Awards a week before Storage Field Day 19, for their outstanding pioneering work on the NAS platform tiering technology of media and broadcasting content according to business value.

A lasting true clustered NAS

This is not a blog to praise Isilon but one that instill respect to a real true clustered, scale-out file system. I have known of OneFS for a long time, but never really took the opportunity to really put my hands on it since 2006 (there is a story). So here is a look at history …

Back in early to mid-2000, there was a lot of talks about large scale NAS. There were several players in the nascent scaling NAS market. NetApp was the filer king, with several competitors such as Polyserve, Ibrix, Spinnaker, Panasas and the young upstart Isilon. There were also Procom, BlueArc and NetApp’s predecessor Auspex. By the second half of the 2000 decade, the market consolidated and most of these NAS players were acquired.

Continue reading

Of Object Storage, Filesystems and Multi-Cloud

Data storage silos everywhere. The early clarion call was to eliminate IT data storage silos by moving to the cloud. Fast forward to the present. Data storage silos are still everywhere, but this time, they are in the clouds. I blogged about this.

Object Storage was all the rage when it first started. AWS, with its S3 (Simple Storage Service) offering, started the cloud storage frenzy. Highly available, globally distributed, simple to access, and fitted superbly into the entire AWS ecosystem. Quickly, a smorgasbord of S3-compatible, S3-like object-based storage emerged. OpenStack Swift, HDS HCP, EMC Atmos, Cleversafe (which became IBM SpectrumScale), Inktank Ceph (which became RedHat Ceph), Bycast (acquired by NetApp to be StorageGrid), Quantum Lattus, Amplidata, and many more. For a period of a few years prior, it looked to me that the popularity of object storage with an S3 compatible front has overtaken distributed file systems.

What’s not to like? Object storage are distributed, they are metadata rich (at a certain structural level), they are immutable (hence secure from a certain point of view), and some even claim self-healing (depending on data protection policies). But one thing that object storage rarely touted dominance was high performance I/O. There were some cases, but they were either fronted by a file system (eg. NFSv4.1 with pNFS extensions), or using some host-based, SAN-client agent (eg. StorNext or Intel Lustre). Object-based storage, in its native form, has not been positioned as high performance I/O storage.

A few weeks ago, I read an article from Storage Soup, Dave Raffo. When I read it, it felt oxymoronic. SwiftStack was just nominated as a visionary in the Gartner Magic Quadrant for Distributed File Systems and Object Storage. But according to Dave’s article, Swiftstack did not want to be “associated” with object storage that much, even though Swiftstack’s technology underpinning was all object storage. Strange.

Continue reading

Big data is big headache

IBM claims that we are responsible of for creating 2.5 quintillion bytes of data every day. How much is 1 quintilion?

 

According to the web,

1 quintillion = 1,000,000,000,000,000,000

After billion, it is trillion, then quadrillion, and then quintillion. That’s what 1 quintillion is, with 18 zeroes!

These data comes from everything from social networking updates, meteorology (weather reports), remote sensing maps (Google Maps, GPS, Geographical Information Systems), photos (Flickr), videos (YouTube), Internet search (Google) and so on. The big data terminology, according to Wikipedia, is data that are too large to be handled and processed by conventional data management tools. This presents a new set of difficulties when it comes to collected these data, storing them and sharing them. Indexing and searching big data would require special technologies to be able to mine and extract valuable information from big data datasets, within an acceptable period of time.

According to Wiki, “Technologies being applied to big data include massively parallel processing (MPP) databases, datamining grids, distributed file systems, distributed databases, cloud computing platforms, the Internet, and scalable storage systems.” That is why EMC has paid big money to acquire GreenPlum and IBM acquired Netezza. Traditional data warehousing players such Teradata, Oracle and Ingres are in the picture as well, setting a collision course between the storage and infrastructure companies and the data warehousing solutions companies.

The 2010 Gartner Magic Quadrant has seen non-traditional players such as IBM/Netezza and EMC/Greenplum, in its leaders quadrant.

 

And the key word that is already on everyone’s lips is “ANALYTICS“.

The ability to extract valuable information that helps determines what the next future trend is and personalized profiling will be something that may already arrived as companies are clamouring to get more and more out of our personalities so that they can sell you more of their wares.

Meteorological organizations are using big data analytics to find out about weather patterns and climate change. Space exploration becomes more acute and precise from the tons and tons of data collected from space explorations. Big data analytics are also helping pharmaceutical companies develop new biological and pharmaceutical breakthroughs. And the list goes on.

I am a new stranger into big data and I do not proclaim to know a lot. But terms such as scale-out NAS, distributed file systems, grid computing, massively parallel processing are certainly bringing the data storage world into a new frontier, and it is something we as storage professionals have to adapt to. I am eager to learn and know more about big data. It is a big headache but change is inevitable.