The rise of RDMA

I have known of RDMA (Remote Direct Memory Access) for quite some time, but never in depth. But since my contract work ended last week, and I have some time off to do some personal development, I decided to look deeper into RDMA. Why RDMA?

In the past 1 year or so, RDMA has been appearing in my radar very frequently, and rightly so. The speedy development and adoption of NVMe (Non-Volatile Memory Express) have pushed All Flash Arrays into the next level. This pushes the I/O and the throughput performance bottlenecks away from the NVMe storage medium into the legacy world of SCSI.

Most network storage interfaces and protocols like SAS, SATA, iSCSI, Fibre Channel today still carry SCSI loads and would have to translate between NVMe and SCSI. NVMe-to-SCSI bridges have to be present to facilitate the translation.

In the slide below, shared at the Flash Memory Summit, there were numerous red boxes which laid out the SCSI connections and interfaces where SCSI-to-NVMe translation (and vice versa) would be required.

Continue reading

The reverse wars – DAS vs NAS vs SAN

It has been quite an interesting 2 decades.

In the beginning (starting in the early to mid-90s), SAN (Storage Area Network) was the dominant architecture. DAS (Direct Attached Storage) was on the wane as the channel-like throughput of Fibre Channel protocol coupled by the million-device addressing of FC obliterated parallel SCSI, which was only able to handle 16 devices and throughput up to 80 (later on 160 and 320) MB/sec.

NAS, defined by CIFS/SMB and NFS protocols – was happily chugging along the 100 Mbit/sec network, and occasionally getting sucked into the arguments about why SAN was better than NAS. I was already heavily dipped into NFS, because I was pretty much a SunOS/Solaris bigot back then.

When I joined NetApp in Malaysia in 2000, that NAS-SAN wars were going on, waiting for me. NetApp (or Network Appliance as it was known then) was trying to grow beyond its dot-com roots, into the enterprise space and guys like EMC and HDS were frequently trying to put NetApp down.

It’s a toy”  was the most common jibe I got in regular engagements until EMC suddenly decided to attack Network Appliance directly with their EMC CLARiiON IP4700. EMC guys would fondly remember this as the “NetApp killer“. Continue reading

Why demote archived data access?

We are all familiar with the concept of data archiving. Passive data gets archived from production storage and are migrated to a slower and often, cheaper storage medium such tapes or SATA disks. Hence the terms nearline and offline data are created. With that, IT constantly reminds users that the archived data is infrequently accessed, and therefore, they have to accept the slower access to passive, archived data.

The business conditions have certainly changed, because the need for data to be 100% online is becoming more relevant. The new competitive nature of businesses dictates that data must be at the fingertips, because speed and agility are the new competitive advantage. Often the total amount of data, production and archived data, is into hundred of TBs, even into PetaBytes!

The industries I am familiar with – Oil & Gas, and Media & Entertainment – are facing this situation. These industries have a deluge of files, and unstructured data in its archive, and much of it dormant, inactive and sitting on old tapes of a bygone era. Yet, these files and unstructured data have the most potential to be explored, mined and analyzed to realize its value to the organization. In short, the archived data and files must be democratized!

The flip side is, when the archived files and unstructured data are coupled with a slow access interface or unreliable storage infrastructure, the value of archived data is downgraded because of the aggravated interaction between access and applications and business requirements. How would organizations value archived data more if the access path to the archived data is so damn hard???!!!

An interesting solution fell upon my lap some months ago, and putting A and B together (A + B), I believe the access path to archived data can be unbelievably of high performance, simple, transparent and most importantly, remove the BLOODY PAIN of FILE AND DATA MIGRATION!  For storage administrators and engineers familiar with data migration, especially if the size of the migration is into hundreds of TBs or even PBs, you know what I mean!

I have known this solution for some time now, because I have been avidly following its development after its founders left NetApp following their Spinnaker venture to start Avere Systems.

avere_220

Continue reading

SMB Witness Protection Program

No, no, FBI is not in the storage business and there are no witnesses to protect.

However, SMB 3.0 has introduced a RPC-based mechanism to inform the clients of any state change in the SMB servers. Microsoft calls it Service Witness Protocol [SWP], and its objective is provide a much faster notification service allow the SMB 3.0 clients to do a failover. In previous SMB 1.0 and even in SMB 2.x, the SMB clients rely on time-out services. The time-out services, either SMB or TCP, could take up as much as 30-45 seconds, and this creates a high latency that is disruptive to enterprise applications.

SMB 3.0, as mentioned in my previous post, had a total revamp, and is now enterprise ready. In what Microsoft calls “Continuously Available” File Service, the SMB 3.0 supports clustered or scale-out file servers. The SMB shares must be shared as “Continuously Available” shares and mapped to SMB 3.0 clients. As shown in the diagram below (provided by SNIA’s webinar),

SMB 3.0 CA Shares

Client A mapping to Server 1 share (\\srv1\CAshr). Client A has a share “handle” that establishes a connection with a corresponding state of the session. The state of the session is synchronously kept consistent with a corresponding state in Server 2.

The Service Witness Protocol is not responsible for the synchronization of the states in the SMB file server cluster. Microsoft has left the HA/cluster/scale-out capability to the proprietary technology method of the NAS vendor. However, SWP regularly observes the status of all services under its watch. Continue reading