Technology prowess of Riverbed SteelFusion

The Riverbed SteelFusion (aka Granite) impressed me the moment it was introduced to me 2 years ago. I remembered that genius light bulb moment well, in December 2012 to be exact, and it had left its mark on me. Like I said last week in my previous blog, the SteelFusion technology is unique in the industry so far and has differentiated itself from its WAN optimization competitors.

To further understand the ability of Riverbed SteelFusion, a deeper inspection of the technology is essential. I am fortunate to be given the opportunity to learn more about SteelFusion’s technology and here I am, sharing what I have learned.

What does the technology of SteelFusion do?

Riverbed SteelFusion takes SAN volumes from supported storage vendors in the central datacenter and projects the storage volumes (aka LUNs)to applications and hosts at the remote branches. The technology requires a paired relationship between SteelFusion Core (in the centralized datacenter) and SteelFusion Edge (at the branch). Both SteelFusion Core and Edge are fronted respectively by the Riverbed SteelHead WAN optimization device, to deliver the performance required.

The diagram below gives an overview of how the entire SteelFusion network architecture is like:

Riverbed SteelFusion Overall Solution 2 Continue reading

Convergence data strategy should not forget the branches

The word “CONVERGENCE” is boiling over as the IT industry goes gaga over darlings like Simplivity and Nutanix, and the hyper-convergence market. Yet, if we take a step back and remove our emotional attachment from the frenzy, we realize that the application and implementation of hyper-convergence technologies forgot one crucial elementThe other people and the other offices!

ROBOs (remote offices branch offices) are part of the organization, and often they are given the shorter end of the straw. ROBOs are like the family’s black sheeps. You know they are there but there is little mention of them most of the time.

Of course, through the decades, there are efforts to consolidate the organization’s circle to include ROBOs but somehow, technology was lacking. FTP used to be a popular but crude technology that binds the branch offices and the headquarter’s operations and data services. FTP is still used today, in countries where network bandwidth costs a premium. Data cloud services are beginning to appear of part of the organization’s outreaching strategy to include ROBOs but the fear of security weaknesses, data breaches and misuses is always there. Often, concerns of the weaknesses of the cloud overcome whatever bold strategies concocted and designed.

For those organizations in between, WAN acceleration/optimization techonolgy is another option. Companies like Riverbed, Silverpeak, F5 and Ipanema have addressed the ROBOs data strategy market well several years ago, but the demand for greater data consolidation and centralization, tighter and more effective data management and data control to meet the data compliance and data governance requirements, has grown much more sophisticated and advanced. Continue reading

No Flash in the pan

The storage networking market now is teeming with flash solutions. Consumers are probably sick to their stomach getting a better insight which flash solution they should be considering. There are so much hype, fuzz and buzz and like a swarm of bees, in the chaos of the moment, there is actually a calm and discerning pattern slowly, but surely, emerging. Storage networking guys would probably know this thing well, but for the benefit of the other readers, how we view flash (and other solid state storage) becomes clear with the picture below: Flash performance gap

(picture courtesy of  http://electronicdesign.com/memory/evolution-solid-state-storage-enterprise-servers)

Right at the top, we have the CPU/Memory complex (labelled as Processor). Our applications, albeit bytes and pieces of them, run in this CPU/Memory complex.

Therefore, we can see Pattern #1 showing up. Continue reading

Correcting NCQ incorrect portrayal with SSDs

A kind reader, Baruch Even, has pointed out my ignorance with SATA Native Command Queuing (NCQ) working with Solid State Drives (SSDs) in my previous blog.

In the post, I have haphazardly stated that NCQ was meant for spinning mechanical drives. I was wrong.

NCQ does indeed improve the performance of SSDs using SATA interfaces, and sometimes as much as 15-20%. I know there is a statement in the SATA Wikipedia page that says that NCQ boosted IOPS by 100% but I would take a much more realistic view of things rather than setting the expectations too high.

The typical SSD consists of flash storage spread across multiple chips, which in turn are a bunch of flash packages. Within each of the flash packages, there are different dies (as in manufacturing terminology “die”, not related to the word of “death”) that houses planes (not related to aeroplanes) and subsequently into blocks and pages.

Continue reading

The big boys better be flash friendly

An interesting article came up in the news this week. The article, from the ever popular The Register, mentioned 3 up and rising storage stars, Nimble Storage, Tintri and Tegile, and their assault on a flash strategy “blind spot” of the big boys, notably EMC and NetApp.

I have known about Nimble Storage and Tintri for a couple of years now, and I did take some time to read up on their storage technology offering. Tegile is new to me when it appeared on my radar after SearchStorage.com announced as the Gold Winner of the enterprise storage category for 2012.

The Register article intriqued me because it implied that these traditional storage vendors such as EMC and NetApp are probably doing a “band-aid” when putting together their flash storage strategy. And typically, I see these strategic concepts introduced by these 2 vendors:

  1. Have a server-side cache strategy by putting a PCIe card on the hosting server
  2. Have a network-based all-flash caching area
  3. Have a PCIe-based flash card on the storage system
  4. Have solid state drives (SSDs) in its disk shelves enclosures

In (1), EMC has VFCache (the server side caching software has been renamed to XtremSW Cache and under repackaging with the Xtrem brand name) and NetApp has it FlashAccel solution. Previously, as I was informed, FlashAccel was using the FusionIO ioTurbine solution but just days ago, NetApp expanded the LSI Nytro WarpDrive into its FlashAccel solution as well. The main objective of a server-side caching strategy using flash is to accelerate mostly read-based I/O operations for specific application workloads at the server side.

Continue reading

Say VDI very fast

This one bugs me.

All the talk about Virtual Desktop Infrastructure (VDI) and how VDI is the next IN thing is beginning to look like hulla baloo to me. Every storage vendor in town is packaging their VDI messaging in the best gift wrapping paper possible, trying to win the hearts of potential customers. But I have a creeping feeling that the customers in Malaysia and even perhaps some in the region are going to be disappointed when all the fluff and huff of VDI meets reality.

I have to admit that I have no experience with VDI. I have no implementation experience, and I have no selling experience of VDI, but having gone through the years looking and observing at the centralized computing and thin client space, history could be repeating itself (again!). Many previous pre-VDI experiences have fallen flat on the face.

Remember the days of X-terminals, early versions of thin clients? Remember the names such as NCD (Network Computing Devices), Wyse Technologies (they were recently acquired by Dell), SCO Tarantella and the infamous Javastation? I don’t know about you, but that Javastation design was one ugly motherf****r.

So, it is my pleasure to remind you again and hopefully give you some nightmares too ;-)

Back to VDI. Yes, the thin-client/zero-client/remote desktop/VDI concept is a great idea! I would have love VDI to be successful. It will be the implementation and the continuous user complaints that will be the bane of its problems. Ultimately, it’s the user’s experience that counts. Continue reading

ARC reactor also caches?

The fictional arc reactor in Iron Man’s suit was the epitome of coolness for us geeks. In the latest edition of Oracle Magazine, Iron Man is on the cover, as well as the other 5 Avengers in a limited edition series (see below).

Just about the same time, I am reading up on the ARC (Adaptive Replacement Caching) that is adopted in ZFS. I am learning in depth of how ZFS caching works as opposed to the more popular LRU (Least Recently Used) caching algorithm that is used in most storage cache memory. Having said that, most storage vendors employed a modified LRU algorithm, with the intention to keep the most recently accessed pages in memory as long as possible. This is true in NetApp’s Data ONTAP (maybe not the ONTAP GX in which I have little experience) and EMC FlareOE. ONTAP goes further to by keeping the most frequently accessed pages permanently in memory. EMC folks would probably refer to most recently accessed as spatial locality while most frequently accessed as temporal locality.

Why is ZFS using ARC and what is ARC? Continue reading

Server way of locked-in storage

It is kind of interesting when every vendor out there claims that they are as open as they can be but the very reality is, the competitive nature of the game is really forcing storage vendors to speak open, but their actions are certainly not.

Confused? I am beginning to see a trend … a trend that is forcing customers to be locked-in with a certain storage vendor. I am beginning to feel that customers are given lesser choices, especially when the brand of the server they select for their applications  will have implications on the brand of storage they will be locked in into.

And surprise, surprise, SSDs are the pawns of this new cloak-and-dagger game. How? Well, I have been observing this for quite a while now, and when HP announced their SMART portfolio for their storage, it’s time for me to say something.

In the announcement, it was reported that HP is coming out with its 8th generation ProLiant servers. As quoted:

The eighth generation ProLiant is turbo-charging its storage with a Smart Array containing solid state drives and Smart Caching.

It also includes two Smart storage items: the Smart Array controllers and Smart Caching, which both feature solid state storage to solve the disk I/O bottleneck problem, as well as Smart Data Services software to use this hardware

From the outside, analysts are claiming this is a reaction to the recent EMC VFCache product. (I blogged about it here) and HP was there to put the EMC VFcache solution as a first generation product, lacking the smarts (pun intended) of what the HP products have to offer. You can read about its performance prowess in the HP Connect blog.

Similarly, Dell announced their ExpressFlash solution that ties up its 12th generation PowerEdge servers with their flagship (what else), Dell Compellent storage.

The idea is very obvious. Put in a PCIe-based flash caching card in the server, and use a condescending caching/tiering technology that ties the server to a certain brand of storage. Only with this card, that (incidentally) works only with this brand of servers, will you, Mr. Customer, be able to take advantage of the performance power of this brand of storage. Does that sound open to you?

HP is doing it with its ProLiant servers; Dell is doing it with its ExpressFlash; EMC’s VFCache, while not advocating any brand of servers, is doing it because VFCache works only with EMC storage. We have seen Oracle doing it with Oracle ExaData. Oracle Enterprise database works best with Oracle’s own storage and the intelligence is in its SmartScan layer, a proprietary technology that works exclusively with the storage layer in the Exadata. Hitachi Japan, with its Hitachi servers (yes, Hitachi servers that we rarely see in Malaysia), already has such a technology since the last 2 years. I wouldn’t be surprised that IBM and Fujitsu already have something in store (or probably I missed the announcement).

NetApp has been slow in the game, but we hope to see them coming out with their own server-based caching products soon. More pure play storage are already singing the tune of SSDs (though not necessarily server-based).

The trend is obviously too, because the messaging is almost always about storage performance.

Yes, I totally agree that storage (any storage) has a performance bottleneck, especially when it comes to IOPS, response time and throughput. And every storage vendor is claiming SSDs, in one form or another, is the knight in shining armour, ready to rid the world of lousy storage performance. Well, SSDs are not the panacea of storage performance headaches because while they solve some performance issues, they introduce new ones somewhere else.

But it is becoming an excuse to introduce storage vendor lock-in, and how has the customers responded this new “concept”? Things are fairly new right now, but I would always advise customers to find out and ask questions.

Cloud storage for no vendor lock-in? Going to the cloud also has cloud service provider lock-in as well, but that’s another story.

 

Lightning about to strike

Watch out for February 6th, 2012 folks! The Lightning is about to strike!

Yes, it is likely that EMC will be announcing their server-based, 8-lane PCIe Flash memory card in early week of February. The PCIe card was dubbed “Project Lightning” when it was first announced in EMC World in May last year. It represents EMC’s first foray of products that sits on the server side, giving the impression that EMC could be entering the server business. I blogged about this way back in September last year. As explained by the EMC folks, they are not going into the server business but rather “extending” their performance tiering into the server space. Think of it like an umbilical cord that  sucks the server’s CPU processing power to give maximum performance boost for the EMC storage.

The card will sport Solid State Drive from LSI Warp Drive and comes in 100/200/300GB capacity. Here’s a picture of how the Lightning card would look like:

The SSD is an SLC (Single Level Cell) and is capable of delivering 150,000 random reads IOPS based on 4K blocks and 190,000 random writes IOPS. It can squeeze 1.4GB/sec in read throughput. While it is not on par with the performance of Fusion-IO, it can definitely do well leveraging EMC’s huge customer base. Furthermore, PCIe-based Flash memory cards such as Fusion-IO will not be able to take advantage of the bridge that links the server and the storage, making it confined to the server’s resources. The advantage is definitely EMC when you explore the possibilities.

Here’s a view of a slide from Virtual Geek summarizing the Project Lightning:

The Lightning card is aimed at customers who demand the highest performance, even higher that Tier 0. It will be integrated with EMC’s FAST (Fully Automated Storage Tiering) technology and is available to the VNX and VMAX platforms.

So watch out folks, because Lightning is about to strike soon!