The rise of RDMA

I have known of RDMA (Remote Direct Memory Access) for quiet some time, but never in depth. But since my contract work ended last week, and I have some time off to do some personal development, I decided to look deeper into RDMA. Why RDMA?

In the past 1 year or so, RDMA has been appearing in my radar very frequently, and rightly so. The speedy development and adoption of NVMe (Non-Volatile Memory Express) have pushed All Flash Arrays into the next level. This pushes the I/O and the throughput performance bottlenecks away from the NVMe storage medium into the legacy world of SCSI.

Most network storage interfaces and protocols like SAS, SATA, iSCSI, Fibre Channel today still carry SCSI loads and would have to translate between NVMe and SCSI. NVMe-to-SCSI bridges have to be present to facilitate the translation.

In the slide below, shared at the Flash Memory Summit, there were numerous red boxes which laid out the SCSI connections and interfaces where SCSI-to-NVMe translation (and vice versa) would be required.

Continue reading

The engineering of Elastifile

[Preamble: I was a delegate of Storage Field Day 12. My expenses, travel and accommodation were paid for by GestaltIT, the organizer and I was not obligated to blog or promote the technologies presented in this event]

When it comes to large scale storage capacity requirements with distributed cloud and on-premise capability, object storage is all the rage. Amazon Web Services started the object-based S3 storage service more than a decade ago, and the romance with object storage started.

Today, there are hundreds of object-based storage vendors out there, touting features after features of invincibility. But after researching and reading through many design and architecture papers, I found that many object-based storage technology vendors began to sound the same.

At the back of my mind, object storage is not easy when it comes to most applications integration. Yes, there is a new breed of cloud-based applications with RESTful CRUD API operations to access object storage, but most applications still rely on file systems to access storage for capacity, performance and protection.

These CRUD and CRUD-like APIs are the common semantics of interfacing object storage platforms. But many, many real-world applications do not have the object semantics to interface with storage. They are mostly designed to interface and interact with file systems, and secretly, I believe many application developers and users want a file system interface to storage. It does not matter if the storage is on-premise or in the cloud.

Let’s not kid ourselves. We are most natural when we work with files and folders.

Implementing object storage also denies us the ability to optimally utilize Flash and solid state storage on-premise when the compute is in the cloud. Similarly, when the compute is on-premise and the flash-based object storage is in the cloud, you get a mismatch of performance and availability requirements as well. In the end, there has to be a compromise.

Another “feature” of object storage is its poor ability to handle transactional data. Most of the object storage do not allow modification of data once the object has been created. Putting a NAS front (aka a NAS gateway) does not take away the fact that it is still object-based storage at the very core of the infrastructure, regardless if it is on-premise or in the cloud.

Resiliency, latency and scalability are the greatest challenges when we want to build a true globally distributed storage or data services platform. Object storage can be resilient and it can scale, but it has to compromise performance and latency to be so. And managing object storage will not be as natural as to managing a file system with folders and files.

Enter Elastifile.

Continue reading

FlashForward to Beyond

The flash frenzy has reached its zenith in 2016. We now no longer are interested in listening to storage technology vendors touting the power of solid state storage (NAND Flash included) over spinning drives.

The capacity of 3D NAND Flash SSDs has reached a whopping 15.3TB (that is even bigger than the 12TB 7200RPM HDDs of today), and with deduplication and compression, the storage efficiency has reached a conservative 4:1 or 5:1. Effective capacity of most mid-end storage arrays can easily reach 1-2 Petabytes.

And flash and hybrid platforms have reached maturity in these few short years. So what is next?

The landscape has obviously changed. The performance landscape, the capacity landscape and all related to the storage data points have changed. And the speed of SSDs together with the up-and-coming NVMe and NVDIMM technology in new storage array controllers are also shifting the data bottlenecks to another part of the architecture. The development of I/O communications and interfaces has to change as well, to take advantage of the asynchronous I/Os in storage tiering and caching using NAND Flash.

With this mature and well understood landscape, it is time to take Flash to the next level. This next level comes in the form of an exciting end-user conference in Singapore on 25th April 2017. It is called FlashForward.

The 2016 FlashForward event in Europe has already garnered great support from the cream of the storage technologists around the world, and had fantastic feedbacks from the end-user attendees. That FlashForward event has also seen the birth of an international business and technology exchange in its inaugural introduction.  Yes, it is time to learn from the field experts, and it is time to build on the Flash Platform for new Data Services.

From the sponsorship package brochure I have received, it is definitely an event not to be missed.

The FlashForward Conference in Singapore is exquisitely procured by Evito Ltd, under the stewardship of Mr. Paul Talbut. Paul is a very seasoned veteran in the global circuit as an SNIA director of several initiatives. He has been immensely involved in the development of several SNIA chapters around the world, including South Asia, Malaysia, India, China, and even Brazil. He also leads by example with the SNIA Global Steering Committee (GSC); he is the SNIA Global Education Director and at one time, SNIA DPCO (Data Protection & Capacity Optimization) global proctor.

I have had the honour working with Paul for almost 8 years now, and I am sure he will lead the FlashForward Conference with valuable insights and experiences.

This is probably the greatest period for the industry and end users to get involved in the FlashForward Conference. For one, it is endorsed by SNIA, the vendor-neutral association which has been the growth beacon of the storage networking industry.

Secondly, it is the perfect opportunity for technology vendors to build their mindshare with end users and customers. And with the endorsement of the independent field experts and technology practitioners, end users would have a field day garnering approvals for their decisions, as well as learning the best practices to build upon the Flash technology they have implemented in their data center space.

The sponsorship packages are listed below, and I do encourage technology vendors, especially the All-Flash vendors to use the FlashForward conference as a platform to build their mindshare, and most of all, their branding. Continue reading

Let’s smoke the storage peace pipe

NVMe (Non-Volatile Memory Express) is upon us. And in the next 2-3 years, we will see a slew of new storage solutions and technology based on NVMe.

Just a few days ago, The Register released an article “Seventeen hopefuls fight for the NVMe Fabric array crown“, and it was timely. I, for one, cannot be more excited about the development and advancement of NVMe and the upcoming NVMeF (NVMe over Fabrics).

This is it. This is the one that will end the wars of DAS, NAS and SAN and unite the warring factions between server-based SAN (the sexy name differentiating old DAS and new DAS) and the networked storage of SAN and NAS. There will be PEACE.

Remember this?

nutanix-nosan-buntingNutanix popularized the “No SAN” movement which later led to VMware VSAN and other server-based SAN solutions, hyperconverged techs such as PernixData (acquired by Nutanix), DataCore, EMC ScaleIO and also operated in hyperscalers – the likes of Facebook and Google. The hyperconverged solutions and the server-based SAN lines blurred of storage but still, they are not the usual networked storage architectures of SAN and NAS. I blogged about this, mentioning about how the pendulum has swung back to favour DAS, or to put it more appropriately, server-based SAN. There was always a “Great Divide” between the 2 modes of storage architectures. Continue reading

Considerations of Hadoop in the Enterprise

I am guilty. I have not been tendering this blog for quite a while now, but it feels good to be back. What have I been doing? Since leaving NetApp 2 months or so ago, I have been active in the scenes again. This time I am more aligned towards data analytics and its burgeoning impact on the storage networking segment.

I was intrigued by an article posted by a friend of mine in Facebook. The article (circa 2013) was titled “Never, ever do this to Hadoop”. It described the author’s gripe with the SAN bigots. I have encountered storage professionals who throw in the SAN solution every time, because that was all they know. NAS, to them, was like that old relative smelled of camphor oil and they avoid NAS like a plague. Similar DAS was frowned upon but how things have changed. The pendulum has swung back to DAS and new market segments such as VSANs and Hyper Converged platforms have been dominating the scene in the past 2 years. I highlighted this in my blog, “Praying to the Hypervisor God” almost 2 years ago.

I agree with the author, Andrew C. Oliver. The “locality” of resources is central to Hadoop’s performance.

Consider these 2 models:

moving-compute-storage

In the model on your left (Moving Data to Compute), the delivery process from Storage to Compute is HEAVY. That is because data has dependencies; data has gravity. However, if you consider the model on your right (Moving Compute to Data), delivering data processing to the storage layer is much lighter. Compute or data processing is transient, and the data in the compute layer is volatile. Once compute’s power is turned off, everything starts again from a clean slate, hence the volatile stage.

Continue reading

Really? Disk is Dead? From Violin?

A catchy email from one of the forums I subscribed to, caught my attention. It goes something like “…Grateful … Disk is Dead“. Here the blog from Kevin Doherty, a Senior Account Manager at Violin Memory.

Coming from Violin Memory, this is pretty obvious because they have an agenda against HDDs. They don’t use any disks at all …. in any form factor. They use VIMMs (Violin Inline Memory Modules), something no vendor in the industry use today.

violin-memory4

I recalled my blog in 2012, titled “Violin pulling the strings“. It came up here in South Asia with much fan fare, lots of razzmatazz and there was plenty of excitement. I was even invited to their product training at Ingram Micro in Singapore and met their early SE, Mike Thompson. Mike is still there I believe, but the EMC veteran in Singapore whom I mentioned in my previous blog, left almost a year later after joining. So was the ex-Sun, General Manager of Violin Memory in Singapore.

Continue reading

The reverse wars – DAS vs NAS vs SAN

It has been quite an interesting 2 decades.

In the beginning (starting in the early to mid-90s), SAN (Storage Area Network) was the dominant architecture. DAS (Direct Attached Storage) was on the wane as the channel-like throughput of Fibre Channel protocol coupled by the million-device addressing of FC obliterated parallel SCSI, which was only able to handle 16 devices and throughput up to 80 (later on 160 and 320) MB/sec.

NAS, defined by CIFS/SMB and NFS protocols – was happily chugging along the 100 Mbit/sec network, and occasionally getting sucked into the arguments about why SAN was better than NAS. I was already heavily dipped into NFS, because I was pretty much a SunOS/Solaris bigot back then.

When I joined NetApp in Malaysia in 2000, that NAS-SAN wars were going on, waiting for me. NetApp (or Network Appliance as it was known then) was trying to grow beyond its dot-com roots, into the enterprise space and guys like EMC and HDS were frequently trying to put NetApp down.

It’s a toy”  was the most common jibe I got in regular engagements until EMC suddenly decided to attack Network Appliance directly with their EMC CLARiiON IP4700. EMC guys would fondly remember this as the “NetApp killer“. Continue reading

Why demote archived data access?

We are all familiar with the concept of data archiving. Passive data gets archived from production storage and are migrated to a slower and often, cheaper storage medium such tapes or SATA disks. Hence the terms nearline and offline data are created. With that, IT constantly reminds users that the archived data is infrequently accessed, and therefore, they have to accept the slower access to passive, archived data.

The business conditions have certainly changed, because the need for data to be 100% online is becoming more relevant. The new competitive nature of businesses dictates that data must be at the fingertips, because speed and agility are the new competitive advantage. Often the total amount of data, production and archived data, is into hundred of TBs, even into PetaBytes!

The industries I am familiar with – Oil & Gas, and Media & Entertainment – are facing this situation. These industries have a deluge of files, and unstructured data in its archive, and much of it dormant, inactive and sitting on old tapes of a bygone era. Yet, these files and unstructured data have the most potential to be explored, mined and analyzed to realize its value to the organization. In short, the archived data and files must be democratized!

The flip side is, when the archived files and unstructured data are coupled with a slow access interface or unreliable storage infrastructure, the value of archived data is downgraded because of the aggravated interaction between access and applications and business requirements. How would organizations value archived data more if the access path to the archived data is so damn hard???!!!

An interesting solution fell upon my lap some months ago, and putting A and B together (A + B), I believe the access path to archived data can be unbelievably of high performance, simple, transparent and most importantly, remove the BLOODY PAIN of FILE AND DATA MIGRATION!  For storage administrators and engineers familiar with data migration, especially if the size of the migration is into hundreds of TBs or even PBs, you know what I mean!

I have known this solution for some time now, because I have been avidly following its development after its founders left NetApp following their Spinnaker venture to start Avere Systems.

avere_220

Continue reading

MASSive, Impressive, Agile, TEGILE

Ah, my first blog after Storage Field Day 6!

It was a fantastic week and I only got to fathom the sensations and effects of the trip after my return from San Jose, California last week. Many thanks to Stephen Foskett (@sfoskett), Tom Hollingsworth (@networkingnerd) and Claire Chaplais (@cchaplais) of Gestalt IT for inviting me over for that wonderful trip 2 weeks’ ago. Tegile was one of the companies I had the privilege to visit and savour.

In a world of utterly confusing messaging about Flash Storage, I was eager to find out what makes Tegile tick at the Storage Field Day session. Yes, I loved Tegile and the campus visit was very nice. I was also very impressed that they have more than 700 customers and over a thousand systems shipped, all within 2 years since they came out of stealth in 2012. However, I was more interested in the essence of Tegile and what makes them stand out.

I have been a long time admirer of ZFS (Zettabyte File System). I have been a practitioner myself and I also studied the file system architecture and data structure some years back, when NetApp and Sun were involved in a lawsuit. A lot of have changed since then and I am very pleased to see Tegile doing great things with ZFS.

Tegile’s architecture is called IntelliFlash. Here’s a look at the overview of the IntelliFlash architecture:

Tegile IntelliFlash Architecture

So, what stands out for Tegile? I deduce that there are 3 important technology components that defines Tegile IntelliFlash ™ Operating System.

  • MASS (Metadata Accelerator Storage System)
  • Media Management
  • Inline Compression and Inline Deduplication

What is MASS? Tegile has patented MASS as an architecture that allows optimized data path to the file system metadata.

Often a typical file system metadata are stored together with the data. This results in a less optimized data access because both the data and metadata are given the same priority. However, Tegile’s MASS writes and stores the filesystem metadata in very high speed, low latency DRAM and Flash SSD. The filesystem metadata probably includes some very fine grained and intimate details about the mapping of blocks and pages to the respective capacity Flash SSDs and the mechanical HDDs. (Note: I made an educated guess here and I would be happy if someone corrected me)

Going a bit deeper, the DRAM in the Tegile hybrid storage array is used as a L1 Read Cache, while Flash SSDs are used as a L2 Read and Write Cache. Tegile takes further consideration that the Flash SSDs used for this caching purpose are different from the denser and higher capacity Flash SSDs used for storing data. These Flash SSDs for caching are obviously the faster, lower latency type of eMLCs and in the future, might be replaced by PCIe Flash optimized by NVMe.

Tegile DRAM-Flash Caching

This approach gives absolute priority, and near-instant access to the filesystem’s metadata, making the Tegile data access incredibly fast and efficient.

Tegile’s Media Management capabilities excite me. This is because it treats every single Flash SSD in the storage array with very precise organization of 3 types of data patterns.

  1. Write caching, which is high I/O is focused on a small segment of the drive
  2. Metadata caching, which has both Read and Write I/O  is targeted to a slight larger segment of the drive
  3. Data is laid out on the rest of the capacity of the drive

Drilling deeper, the write caching (in item 1 above) high I/O writes are targeted at the drive segment’s range which is over-provisioned for greater efficiency and care. At the same time, the garbage collection(GC) of this segment is handled by the respective drive’s controller. This is important because the controller will be performing the GC function without inducing unnecessary latency to the storage array processing cycles, giving further boost to Tegile’s already awesome prowess.

In addition to that, IntelliFlash ™ aligns every block and every page exactly to each segment and each page boundary of the drives. This reduces block and page segmentation, and thereby reduces issues with file locality and free blocks locality. It also automatically adjust its block and page alignments to different drive types and models. Therefore, I believe, it would know how to align itself to a 512-bytes or a 520-bytes sector drives.

The Media Management function also has advanced cell care. The wear-leveling takes on a newer level of advancement where how the efficient organization of blocks and pages to the drives reduces additional and often unnecessary erase and rewrites. Furthermore, the use of Inline Compression and Inline Deduplication also reduces the number of writes to drives media, increasing their longevity.

Tegile Inline Compression and Deduplication

Compression and deduplication are 2 very important technology features in almost all flash arrays. Likewise, these 2 technologies are crucial in the performance of Tegile storage systems. They are both inline i.e – Inline Compression and Inline Deduplication, and therefore both are boosted by the multi-core CPUs as well as the fast DRAM memory.

I don’t have the secret sauce formula of how Tegile designed their inline compression and deduplication. But there’s a very good article of how Tegile viewed their method of data reduction for compression and deduplication. Check out their blog here.

The metadata of data access of each and every customer is probably feeding into their Intellicare, a cloud-based customer care program. Intellicare is another a strong differentiator in Tegile’s offering.

Oh, did I mentioned they are unified storage as well with both SAN and NAS, including SMB 3.0 support?

I left Tegile that afternoon on November 5th feeling happy. I was pleased to catch up with Narayan Venkat, my old friend from NetApp, who is now their Chief Marketing Officer. I was equally pleased to see Tegile advancing ZFS further than the others I have known. With so much technological advancement and more coming, the world is their oyster.

Technology prowess of Riverbed SteelFusion

The Riverbed SteelFusion (aka Granite) impressed me the moment it was introduced to me 2 years ago. I remembered that genius light bulb moment well, in December 2012 to be exact, and it had left its mark on me. Like I said last week in my previous blog, the SteelFusion technology is unique in the industry so far and has differentiated itself from its WAN optimization competitors.

To further understand the ability of Riverbed SteelFusion, a deeper inspection of the technology is essential. I am fortunate to be given the opportunity to learn more about SteelFusion’s technology and here I am, sharing what I have learned.

What does the technology of SteelFusion do?

Riverbed SteelFusion takes SAN volumes from supported storage vendors in the central datacenter and projects the storage volumes (aka LUNs)to applications and hosts at the remote branches. The technology requires a paired relationship between SteelFusion Core (in the centralized datacenter) and SteelFusion Edge (at the branch). Both SteelFusion Core and Edge are fronted respectively by the Riverbed SteelHead WAN optimization device, to deliver the performance required.

The diagram below gives an overview of how the entire SteelFusion network architecture is like:

Riverbed SteelFusion Overall Solution 2 Continue reading