Stating the case for a Storage Appliance approach

I was in Indonesia last week to meet with iXsystems™‘ partner PT Maha Data Solusi. I had the wonderful opportunity to meet with many people there and one interesting and often-replayed question arose. Why aren’t iX doing software-defined-storage (SDS)? It was a very obvious and deliberate question.

After all, iX is already providing the free use of the open source TrueNAS® CORE software that runs on many x86 systems as an SDS solution and yet commercially, iX sell the TrueNAS® storage appliances.

This argument between a storage appliance model and a storage storage only model has been debated for more than a decade, and it does come into my conversations on and off. I finally want to address this here, with my own views and opinions. And I want to inform that I am open to both models, because as a storage consultant, both have their pros and cons, advantages and disadvantages. Up front I gravitate to the storage appliance model, and here’s why.

My story of the storage appliance begins …

Back in the 90s, most of my work was on Fibre Channel and NFS. iSCSI has not existed yet (iSCSI was ratified in 2003). It was almost exclusively on the Sun Microsystems® enterprise storage with Sun’s software resell of the Veritas® software suite that included the Sun Volume Manager (VxVM), Veritas® Filesystem (VxFS), Veritas® Replication (VxVR) and Veritas® Cluster Server (VCS). I didn’t do much Veritas® NetBackup (NBU) although I was trained at Veritas® in Boston in July 1997 (I remembered that 2 weeks’ trip fondly). It was just over 2 months after Veritas® acquired OpenVision. Backup Plus was the NetBackup.

Between 1998-1999, I spent a lot of time working Sun NFS servers. The prevalent networking speed at that time was 100Mbits/sec. And I remember having this argument with a Sun partner engineer by the name of Wong Teck Seng. Teck Seng was an inquisitive fella (still is) and he was raving about this purpose-built NFS server he knew about and he shared his experience with me. I detracted him, brushing aside his always-on tech orgasm, and did not find great things about a NAS storage appliance. Auspex™ was big then, and I knew of them.

I joined NetApp® as Malaysia’s employee #2. It was an odd few months working with a storage appliance but after a couple of months, I started to understand and appreciate the philosophy. The storage Appliance Model made sense to me, even through these days.

Continue reading

Object Storage becoming storage lingua franca of Edge-Core-Cloud

Data Fabric was a big buzzword going back several years. I wrote a piece talking about Data Fabric, mostly NetApp®’s,  almost 7 years ago, which I titled “The Transcendence of Data Fabric“. Regardless of storage brands and technology platforms, and each has its own version and interpretations, one thing holds true. There must be a one layer of Data Singularity. But this is easier said than done.

Fast forward to present. The latest buzzword is Edge-to-Core-Cloud or Cloud-to-Core-Edge. The proliferation of Cloud Computing services, has spawned beyond to multiclouds, superclouds and of course, to Edge Computing. Data is reaching to so many premises everywhere, and like water, data has found its way.

Edge-to-Core-to-Cloud (Gratitude thanks to

The question on my mind is can we have a single storage platform to serve the Edge-to-Core-to-Cloud paradigm? Is there a storage technology which can be the seamless singularity of data? 7+ years onwards since my Data Fabric blog, The answer is obvious. Object Storage.

The ubiquitous object storage and the S3 access protocol

For a storage technology that was initially labeled “cheap and deep”, object storage has become immensely popular with developers, cloud storage providers and is fast becoming storage repositories for data connectors. I wrote a piece called “All the Sources and Sinks going to Object Storage” over a month back, which aptly articulate how far this technology has come.

But unknown to many (Google NASD and little is found), object storage started its presence in SNIA (it was developed in Carnegie-Mellon University prior to that) in the early 90s, then known as NASD (network attached secure disk). As it is made its way into the ANSI T10 INCITS standards development, it became known as Object-based Storage Device or OSD.

The introduction of object storage services 16+ years ago by Amazon Web Services (AWS) via their Simple Storage Services (S3) further strengthened the march of object storage, solidified its status as a top tier storage platform. It was to AWS’ genius to put the REST API over HTTP/HTTPS with its game changing approach to use CRUD (create, retrieve, update, delete) operations to work with object storage. Hence the S3 protocol, which has become the de facto access protocol to object storage.

Yes, I wrote those 2 blogs 11 and 9 years ago respectively because I saw that object storage technology was a natural fit to the burgeoning new world of storage computing. It has since come true many times over.

Continue reading

All the Sources and Sinks going to Object Storage

The vocabulary of sources and sinks are beginning to appear in the world of data storage as we witness the new addition of data processing frameworks and the applications in this space. I wrote about this in my blog “Rethinking data. processing frameworks systems in real time” a few months ago, introducing my take on this budding new set of I/O characteristics and data ecosystem. I also started learning about the Kappa Architecture (and Lambda as well), a framework designed to craft and develop a set of amalgamated technologies to handle stream processing of a series of data in relation to time.

In Computer Science, sources and sinks are considered external entities that often serve as connectors of input and output of disparate systems. They are often not in the purview of data storage architects. Also often, these sources and sinks are viewed as black boxes, and their inner workings are hidden from the views of the data storage architects.

Diagram from

The changing facade of data stream processing presents the constant motion of data, the continuous data being altered as it passes through the many integrated sources and sinks. We are also see much of the data processed in-memory as much as possible. Thus, the data services from a traditional storage model of SAN and NAS may straggle with the requirements demanded by this new generation of data stream processing.

As the world of traditional data storage processing is expanding into data streams processing and vice versa, and the chatter of sources and sinks can no longer be ignored.

Continue reading

Computational Storage embodies Data Velocity and Locality

I have been earnestly observing the growth of Computational Storage for a number of years now.  It was known by several previous names, with the name “in-situ data processing” stuck with me the most. The Computational Storage nomenclature became more cohesive when SNIA® put together the CMSI (Compute Memory Storage Initiative) some time back. This initiative is where several standards bodies, the major technology players and several SIGs (special interest groups) in SNIA® collaborated to advance Computational Storage segment in the storage technology industry we know of today.

The use cases for Computational Storage are burgeoning, and the functional implementations of Computational Storage are becoming vital to tackle the explosive data tsunami. In 2018 IDC, in its Worldwide Global Datasphere Forecast 2021-2025 report, predicted that the world will have 175 ZB (zettabytes) of data. That number, according to hearsay, has been revised to a heady figure of 250ZB, given the superlative rate data is being originated, spawned and more.

Computational Storage driving factors

If we take the Computer Science definition of in-situ processing, Computational Storage can be distilled as processing data where it resides. In a nutshell, “Bring Compute closer to Storage“. This means that there is a processing unit within the storage subsystem which does not require the host CPU to perform processing. In a very simplistic manner, a RAID card in a storage array can be considered a Computational Storage device because it performs the RAID functions instead of the host CPU. But this new generation of Computational Storage has much more prowess than just the RAID function in a RAID card.

There are many factors in Computational Storage that make a lot sense. Here are a few:

  1. Voluminous data inundate the centralized architecture of the cloud platforms and the enterprise systems today. Much of the data come from end point devices – mobile devices, sensors, IoT, point-of-sales, video cameras, Pre-processing the data at the origin data points can help filter the data, reduce the size to be processed centrally, and secure the data before they are ingested into the central data processing systems
  2. Real-time processing of the data at the moment the data is received gives the opportunity to create the Velocity of Data Analytics. Much of the data do not need to move to a central data processing system for analysis. Often in use cases like autonomous vehicles, fraud detection, recommendation systems, disaster alerts etc require near instantaneous responses. Performing early data analytics at the data origin point has tremendous advantages.
  3. Moore’s Law is waning. The CPU (central processing unit) is no longer the center of the universe. We are beginning to see CPU offloading technologies to augment the CPU’s duties such as compression, encryption, transcoding and more. SmartNICs, DPUs (data processing units), VPUs (visual processing units), GPUs (graphics processing units), etc have come forth to formulate a new computing paradigm.
  4. Freeing up central resources with Computational Storage also accelerates the overall distributed data processing in the whole data architecture. The CPU and the adjoining memory subsystem are less required to perform context switching caused by I/O interrupts as in most of the compute/storage architecture today. The total effect relieves the CPU and giving back more CPU cycles to perform higher processing tasks, resulting in faster performance overall.
  5. The rise of memory interconnects is enabling a more distributed computing fabric of data processing subsystems. The rising CXL (Compute Express Link™) interconnect protocol, especially after the Gen-Z annex, has emerged a force to be reckoned with. This rise of memory interconnects will likely strengthen the testimony of Computational Storage in the fast approaching future.

Computational Storage Deployment Models

SNIA Computational Storage Universe in 2019

Continue reading

Time to Conflate Storage with Data Services

Around the year 2016, I started to put together a better structure to explain storage infrastructure. I started using the word Data Services Platform before what it is today. And I formed a pictorial scaffold to depict what I wanted to share. This was what I made at that time.

Data Services Platform (circa 2016)- Copyright Heoh Chin Fah

One of the reasons I am bringing this up again is many of the end users and resellers still look at storage from the perspective of capacity, performance and price. And as if two plus two equals five, many storage pre-sales and architects reciprocate with the same type of responses that led to the deteriorated views of the storage technology infrastructure industry as a whole. This situation irks me. A lot.

Continue reading

HODLing Decentralized Storage is not zero sum

I have been dipping my toes into decentralized storage. I wrote about “Crossing the Chasm” last month where most early technologies have to experience to move into the mainstream adoption. I believe the same undertaking is going on for decentralized storage and the undercurrents are beginning to feel like a tidal wave. However, the clarion calls and the narratives around decentralized storage are beginning to sound the same after several months on researching the subject.

Salient points of decentralized storage

I have summarized a bunch of these arguments for decentralized storage. They are:

  • Democratization of cloud storage services separate from the hyperscaling behemoths of Web2
  • Inherent data security with default encryption, immutability and blockchain-ed. (most decentralized storage are blockchain-based. A few are not)
  • Data privacy with the security key for data decryption and authentication with the data owner(s)
  • No centralized control of data storage services, prices, market transparency and sovereignty
  • Green with more efficient energy consumption compared to Bitcoin
  • Data durability with data sharding creating no single point of failure and maintaining continuous data access services with geo content dispersal

Rocket fuel – The cryptos

Most early adoptions of a new technology require some sort of bliztscaling momentum to break free from the gravity of the old one. The cryptocurrencies pegged to many decentralized storage platforms are the rocket fuel to power the conversations and the narratives of the decentralized storage today. I probably counted over a hundred of these types of cryptocurrencies, with more jumping into the bandwagon as the gravy train moves ahead.

The table below is part of a TechTarget Search Storage article “7 Decentralized Storage Networks compared“. I found this article most enlightening.

7 Decentralized Storage Compared

Continue reading

Celebrating MinIO

Essentially MinIO is a web server …

I vaguely recalled Anand Babu Periasamy (AB as he is known), the CEO of MinIO saying that when I first met him in 2017. I was fresh “playing around” with MinIO and instantly I fell in love with software technology. Wait a minute. Object storage wasn’t supposed to be so easy. It was not supposed to be that simple to set up and use, but MinIO burst into my storage universe like the birth of the Infinity Stones. There was a eureka moment. And I was attending one of the Storage Field Days in the US shortly after my MinIO discovery in late 2017. What an opportunity!

I could not recall how I made the appointment to meeting MinIO, but I recalled myself taking an Uber to their cosy office on University Avenue in Palo Alto to meet. Through Andy Watson (one of the CTOs then), I was introduced to AB, Garima Kapoor, MinIO’s COO and his wife, Frank Wessels, Zamin (one of the business people who is no longer there) and Ugur Tigli (East Coast CTO) who was on the Polycom. I was awe struck.

Last week, MinIO scored a major Series B round funding of USD103 million. It was delayed by the pandemic because I recalled Garima telling me that the funding was happening in 2020. But I think the delay made it better, because the world now is even more ready for MinIO than ever before.

Continue reading

The Currency to grow Decentralized Storage

Unless you have been living under a rock in the past months, the fervent and loud, but vague debates of web3.0 have been causing quite a scene on the Internet. Those tiny murmurs a few months ago have turned into an avalanche of blares and booms, with both believers and detractors crying out their facts and hyperboles.

Within the web3.0, decentralized storage technologies have been rising to a crescendo. So many new names have come forth into the decentralized storage space, most backed by blockchain and incentivized by cryptocurrencies and is putting the 19th century California Gold Rush to shame.

At present, the decentralized storage market segment is fluid, very vibrant and very volatile. Being the perennial storage guy that I am, I would very much like the decentralized storage to be sustainably successful but first, it has to make sense. Logic must prevail before confidence follows.

Classic “Crossing the Chasm”

To understand this decentralization storage chaos, we must understand where it is now, and where it is going. History never forgets to teach us of the past to be intelligible in the fast approaching future.

I look to this situation as a classic crossing the chasm case. This Crossing the Chasm concept was depicted in Geoffrey Moore’s 1991 book of the same name. In his book, he spoke well about the Technology Adoption Cycle that classifies and demonstrates the different demographics and psychological progression (and regression) of how a technology is taken to mainstream.

Geoffrey Moore’s Crossing the Chasm Technology (Disruption) Adoption Cycle

As a new technology enters the market, the adoption is often fueled by the innovators, the testers, the crazy ones. It progresses and the early adopters set in. Here we get the believers, the fanatics, the cults that push the envelope a bit further, going against the institutions and the conventions. This, which is obvious, describes the early adopter stage of the decentralized storage today.

Like all technologies, it has to go mainstream to be profitable and to get there, its value to the masses must be well defined to be accepted. This is the market segment that decentralized storage must move to, to the early majority stage. But there is a gap, rightly pointed out and well defined by Geoffrey Moore. The “Chasm“. [ Note: To read about why the chasm, read this article ].

So how will decentralized storage cross the chasm to the majority of the market?

Continue reading

Rethinking data processing frameworks systems in real time

“Row, row, row your boat, gently down the stream…”

Except the stream isn’t gentle at all in the data processing’s new context.

For many of us in the storage infrastructure and data management world, the well known framework is storing and retrieve data from a storage media. That media could be a disk-based storage array, a tape, or some cloud storage where the storage media is abstracted from the users and the applications. The model of post processing the data after the data has safely and persistently stored on that media is a well understood and a mature one. Users, applications and workloads (A&W) process this data in its resting phase, retrieve it, work on it, and write it back to the resting phase again.

There is another model of data processing that has been bubbling over the years and now reaching a boiling point. Still it has not reached its apex yet. This is processing the data in flight, while it is still flowing as it passes through processing engine. The nature of this kind of data is described in one 2018 conference I chanced upon a year ago.

letgo marketplace processing numbers in 2018

  • * NRT = near real time

From a storage technology infrastructure perspective, this kind of data processing piqued my curiosity immensely. And I have been studying this burgeoning new data processing model in my spare time, and where it fits, bringing the understanding back into the storage infrastructure and data management side.

Continue reading

How well do you know your data and the storage platform that processes the data

Last week was consumed by many conversations on this topic. I was quite jaded, really. Unfortunately many still take a very simplistic view of all the storage technology, or should I say over-marketing of the storage technology. So much so that the end users make incredible assumptions of the benefits of a storage array or software defined storage platform or even cloud storage. And too often caveats of turning on a feature and tuning a configuration to the max are discarded or neglected. Regards for good storage and data management best practices? What’s that?

I share some of my thoughts handling conversations like these and try to set the right expectations rather than overhype a feature or a function in the data storage services.

Complex data networks and the storage services that serve it

I/O Characteristics

Applications and workloads (A&W) read and write from the data storage services platforms. These could be local DAS (direct access storage), network storage arrays in SAN and NAS, and now objects, or from cloud storage services. Regardless of structured or unstructured data, different A&Ws have different behavioural I/O patterns in accessing data from storage. Therefore storage has to be configured at best to match these patterns, so that it can perform optimally for these A&Ws. Without going into deep details, here are a few to think about:

  • Random and Sequential patterns
  • Block sizes of these A&Ws ranging from typically 4K to 1024K.
  • Causal effects of synchronous and asynchronous I/Os to and from the storage

Continue reading