No Flash in the pan

The storage networking market now is teeming with flash solutions. Consumers are probably sick to their stomach getting a better insight which flash solution they should be considering. There are so much hype, fuzz and buzz and like a swarm of bees, in the chaos of the moment, there is actually a calm and discerning pattern slowly, but surely, emerging. Storage networking guys would probably know this thing well, but for the benefit of the other readers, how we view flash (and other solid state storage) becomes clear with the picture below: Flash performance gap

(picture courtesy of

Right at the top, we have the CPU/Memory complex (labelled as Processor). Our applications, albeit bytes and pieces of them, run in this CPU/Memory complex.

Therefore, we can see Pattern #1 showing up. (more…)

Correcting NCQ incorrect portrayal with SSDs

A kind reader, Baruch Even, has pointed out my ignorance with SATA Native Command Queuing (NCQ) working with Solid State Drives (SSDs) in my previous blog.

In the post, I have haphazardly stated that NCQ was meant for spinning mechanical drives. I was wrong.

NCQ does indeed improve the performance of SSDs using SATA interfaces, and sometimes as much as 15-20%. I know there is a statement in the SATA Wikipedia page that says that NCQ boosted IOPS by 100% but I would take a much more realistic view of things rather than setting the expectations too high.

The typical SSD consists of flash storage spread across multiple chips, which in turn are a bunch of flash packages. Within each of the flash packages, there are different dies (as in manufacturing terminology “die”, not related to the word of “death”) that houses planes (not related to aeroplanes) and subsequently into blocks and pages.


The big boys better be flash friendly

An interesting article came up in the news this week. The article, from the ever popular The Register, mentioned 3 up and rising storage stars, Nimble Storage, Tintri and Tegile, and their assault on a flash strategy “blind spot” of the big boys, notably EMC and NetApp.

I have known about Nimble Storage and Tintri for a couple of years now, and I did take some time to read up on their storage technology offering. Tegile is new to me when it appeared on my radar after announced as the Gold Winner of the enterprise storage category for 2012.

The Register article intriqued me because it implied that these traditional storage vendors such as EMC and NetApp are probably doing a “band-aid” when putting together their flash storage strategy. And typically, I see these strategic concepts introduced by these 2 vendors:

  1. Have a server-side cache strategy by putting a PCIe card on the hosting server
  2. Have a network-based all-flash caching area
  3. Have a PCIe-based flash card on the storage system
  4. Have solid state drives (SSDs) in its disk shelves enclosures

In (1), EMC has VFCache (the server side caching software has been renamed to XtremSW Cache and under repackaging with the Xtrem brand name) and NetApp has it FlashAccel solution. Previously, as I was informed, FlashAccel was using the FusionIO ioTurbine solution but just days ago, NetApp expanded the LSI Nytro WarpDrive into its FlashAccel solution as well. The main objective of a server-side caching strategy using flash is to accelerate mostly read-based I/O operations for specific application workloads at the server side.


Expensive hard disk is good

No, I don’t mean to be bad, but the spinning HDDs’ prices will remain high even if the post-Thailand flood production has resumed to normalcy.

According to IHS iSuppli, a market research intelligence firm, the prices will continue to hold steady and will not fall to pre-flood level until 2014. The reason is simple. The prices of the hard disk drives are pretty much dictated by the only 2 real remaining hard disk companies in the world – Seagate and Western Digital. These guys controls more than 85% of the hard disk market and as demand of HDDs outstrips supply, the current hard disk prices are hitting the bottom line hard for just about everyone.

But the bad news is turning into good news for solid state storage devices. NAND-Flash based devices are driving a new clan of storage start-ups in the likes of Violin Memory, Kaminario, Pure Storage and Virident. The EMC acquisition of XtremIO was a strong endorsement that cements the cornerstone of all enterprise storage arrays to come. Even the Register predicted that the EMC VMAX will be the last primary storage array before the flash tsunami.

The NAND-Flash solid state of multi-level cells (MLCs) and single level cells (SLCs) and even triple level cells (TLCs) are going through birth, puberty, adolescent extremely fast because the demand for faster and faster IOPS, throughput and lower latency is hitting at full speed. And it is likely that all the xLCs (SLCs, MLCs and TLCs) could go through cycle in an extremely short lifespan, because there is a new class of solid state that is pushing the performance-price envelope closer and closer to speed of DRAM but with the price of Flash. This new type of solid state is Storage Class Memory (SCM). (more…)

SAP wants to kill Oracle

It’s not new. SAP has been trying to do it for years but with little success. SAP applications and its modules still very much rely on the Oracle database as its core engine but all that that could change within the next few years. SAP has HANA now.

I thought it is befitting to use the movie poster of “Hanna” (albeit an extra “N” in the spelling) to portray SAP who clearly has Oracle in its sights now, with a sharpened arrow head aimed at the jugular of the Oracle beast. (If you haven’t watched the movie, you will see the girl Hanna, using the bow and arrow to hunt a large reindeer).

What is HANA anyway? It was previously an analytics appliance in SAP HANA 1.0SP2. Its key component is the HANA in-memory database (IMDB) and it was not aimed for the general purpose, relational database market yet. Or perhaps, that’s what SAP wants Oracle to believe. (more…)

Solid State Drives … are they reliable?

There’s been a lot of questions about Solid State Drives (SSD), aka Enterprise Flash Drives (EFD) by some vendors. Are they less reliable than our 10K or 15K RPM hard disk drives (HDDs)? I was asked this question in the middle of the stage when I was presenting the topic of Green Storage 3 weeks ago.

Well, the usual answer from the typical techie is … “It depends”.

We all fear the unknown and given the limited knowledge we have about SSDs (they are fairly new in the enterprise storage market), we tend to be drawn more to the negatives than the positives of what SSDs are and what they can be. I, for one, believe that SSDs have more positives and over time, we will grow to accept that this is all part of what the IT evolution. IT has always evolved into something better, stronger, faster, more reliable and so on. As famously quoted by Jeff Goldblum’s character Dr. Ian Malcolm, in the movie Jurassic Park I, “Life finds a way …”, IT will always find a way to be just that.

SSDs are typically categorized into MLCs (multi-level cells) and SLCs (single-level cells). They have typically predictable life expectancy ranging from tens of thousands of writes to more than a million writes per drive. This, by no means, is a measure of reliability of the SSDs versus the HDDs. However, SSD controllers and drives employ various techniques to enhance the durability of the drives. A common method is to balance the I/O accesses to the disk block to adapt the I/O usage patterns which can prolong the lifespan of the disk blocks (and subsequently the drives itself) and also ensure performance of the drive does not lag since the I/O is more “spread-out” in the drive. This is known as “wear-leveling” algorithm.

Most SSDs proposed by enterprise storage vendors are MLCs to meet the market price per IOP/$/GB demand because SLC are definitely more expensive for higher durability. Also MLCs have higher BER (bit-error-rate) and it is known than MLCs have 1 BER per 10,000 writes while SLCs have 1 BER per 100,000 writes.

But the advantage of SSDs clearly outweigh HDDs. Fast access (much lower latency) is one of the main advantages. Higher IOPS is another one. SSDs can provide from several thousand IOPS to more than 1 million IOPS when compared to enterprise HDDs. A typical 7,200 RPM SATA drive has less than 120 IOPS while a 15,000 RPM Fibre Channel or SAS drive ranges from 130-200 IOPS. That IOPS advantage is definitely a vast differentiator when comparing SSDs and HDDs.

We are also seeing both drive-format and card-format SSDs in the market. The drive-format type are typically in the 2.5″ and 3.5″ profile and they tend to fit into enterprise storage systems as “disk drives”. They are known to provide capacity. On the other hand, there are also card-format type of SSDs, that fit into a PCIe card that is inserted into host systems. These tend to address the performance requirement of systems and applications. The well known PCIe vendors are Fusion-IO which is in the high-end performance market and NetApp which peddles the PAM (Performance Access Module) card in its filers. The PAM card has been renamed as FlashCache. Rumour has it that EMC will be coming out with a similar solution soon.

Another to note is that SSDs can be read-biased or write-biased. Most SSDs in the market tend to be more read-biased, published with high read IOPS, not write IOPS. Therefore, we have to be prudent to know what out there. This means that some solution, such as the NetApp FlashCache, is more suitable for heavy-read I/O rather than writes I/O. The FlashCache addresses a large segment of the enterprise market because most applications are heavy on reads than writes.

SSDs have been positioned as Tier 0 layer in the Automated Storage Tiering segment of Enterprise Storage. Vendors such as Dell Compellent, HP 3PAR and also EMC FAST2 position themselves with enhanced tiering techniques to automated LUN and sub-LUN tiering and customers have been lapping up this feature like little puppies.

However, an up-and-coming segment for SSDs usage is positioning the SSDs as extended read or write cache to the existing memory of the systems. NetApp’s Flashcache is a PCIe solution that is basically an extended read cache. An interesting feature of Oracle Solaris ZFS called Hybrid Storage Pool allows the creation of read and write cache using SSDs. The Sun fellas even come up with cool names – ReadZilla and LogZilla – for this Hybrid Storage Pool features.

Basically, I have poured out what I know about SSDs (so far) and I intend to learn more about it. SNIA (Storage Networking Industry Association) has a Technical Working Group for Solid State Storage. I advise the readers to check it out.