FlashForward to Beyond

The flash frenzy has reached its zenith in 2016. We now no longer are interested in listening to storage technology vendors touting the power of solid state storage (NAND Flash included) over spinning drives.

The capacity of 3D NAND Flash SSDs has reached a whopping 15.3TB (that is even bigger than the 12TB 7200RPM HDDs of today), and with deduplication and compression, the storage efficiency has reached a conservative 4:1 or 5:1. Effective capacity of most mid-end storage arrays can easily reach 1-2 Petabytes.

And flash and hybrid platforms have reached maturity in these few short years. So what is next?

The landscape has obviously changed. The performance landscape, the capacity landscape and all related to the storage data points have changed. And the speed of SSDs together with the up-and-coming NVMe and NVDIMM technology in new storage array controllers are also shifting the data bottlenecks to another part of the architecture. The development of I/O communications and interfaces has to change as well, to take advantage of the asynchronous I/Os in storage tiering and caching using NAND Flash.

With this mature and well understood landscape, it is time to take Flash to the next level. This next level comes in the form of an exciting end-user conference in Singapore on 25th April 2017. It is called FlashForward.

The 2016 FlashForward event in Europe has already garnered great support from the cream of the storage technologists around the world, and had fantastic feedbacks from the end-user attendees. That FlashForward event has also seen the birth of an international business and technology exchange in its inaugural introduction.  Yes, it is time to learn from the field experts, and it is time to build on the Flash Platform for new Data Services.

From the sponsorship package brochure I have received, it is definitely an event not to be missed.

The FlashForward Conference in Singapore is exquisitely procured by Evito Ltd, under the stewardship of Mr. Paul Talbut. Paul is a very seasoned veteran in the global circuit as an SNIA director of several initiatives. He has been immensely involved in the development of several SNIA chapters around the world, including South Asia, Malaysia, India, China, and even Brazil. He also leads by example with the SNIA Global Steering Committee (GSC); he is the SNIA Global Education Director and at one time, SNIA DPCO (Data Protection & Capacity Optimization) global proctor.

I have had the honour working with Paul for almost 8 years now, and I am sure he will lead the FlashForward Conference with valuable insights and experiences.

This is probably the greatest period for the industry and end users to get involved in the FlashForward Conference. For one, it is endorsed by SNIA, the vendor-neutral association which has been the growth beacon of the storage networking industry.

Secondly, it is the perfect opportunity for technology vendors to build their mindshare with end users and customers. And with the endorsement of the independent field experts and technology practitioners, end users would have a field day garnering approvals for their decisions, as well as learning the best practices to build upon the Flash technology they have implemented in their data center space.

The sponsorship packages are listed below, and I do encourage technology vendors, especially the All-Flash vendors to use the FlashForward conference as a platform to build their mindshare, and most of all, their branding. Continue reading

Let’s smoke the storage peace pipe

NVMe (Non-Volatile Memory Express) is upon us. And in the next 2-3 years, we will see a slew of new storage solutions and technology based on NVMe.

Just a few days ago, The Register released an article “Seventeen hopefuls fight for the NVMe Fabric array crown“, and it was timely. I, for one, cannot be more excited about the development and advancement of NVMe and the upcoming NVMeF (NVMe over Fabrics).

This is it. This is the one that will end the wars of DAS, NAS and SAN and unite the warring factions between server-based SAN (the sexy name differentiating old DAS and new DAS) and the networked storage of SAN and NAS. There will be PEACE.

Remember this?

nutanix-nosan-buntingNutanix popularized the “No SAN” movement which later led to VMware VSAN and other server-based SAN solutions, hyperconverged techs such as PernixData (acquired by Nutanix), DataCore, EMC ScaleIO and also operated in hyperscalers – the likes of Facebook and Google. The hyperconverged solutions and the server-based SAN lines blurred of storage but still, they are not the usual networked storage architectures of SAN and NAS. I blogged about this, mentioning about how the pendulum has swung back to favour DAS, or to put it more appropriately, server-based SAN. There was always a “Great Divide” between the 2 modes of storage architectures. Continue reading

MASSive, Impressive, Agile, TEGILE

Ah, my first blog after Storage Field Day 6!

It was a fantastic week and I only got to fathom the sensations and effects of the trip after my return from San Jose, California last week. Many thanks to Stephen Foskett (@sfoskett), Tom Hollingsworth (@networkingnerd) and Claire Chaplais (@cchaplais) of Gestalt IT for inviting me over for that wonderful trip 2 weeks’ ago. Tegile was one of the companies I had the privilege to visit and savour.

In a world of utterly confusing messaging about Flash Storage, I was eager to find out what makes Tegile tick at the Storage Field Day session. Yes, I loved Tegile and the campus visit was very nice. I was also very impressed that they have more than 700 customers and over a thousand systems shipped, all within 2 years since they came out of stealth in 2012. However, I was more interested in the essence of Tegile and what makes them stand out.

I have been a long time admirer of ZFS (Zettabyte File System). I have been a practitioner myself and I also studied the file system architecture and data structure some years back, when NetApp and Sun were involved in a lawsuit. A lot of have changed since then and I am very pleased to see Tegile doing great things with ZFS.

Tegile’s architecture is called IntelliFlash. Here’s a look at the overview of the IntelliFlash architecture:

Tegile IntelliFlash Architecture

So, what stands out for Tegile? I deduce that there are 3 important technology components that defines Tegile IntelliFlash ™ Operating System.

  • MASS (Metadata Accelerator Storage System)
  • Media Management
  • Inline Compression and Inline Deduplication

What is MASS? Tegile has patented MASS as an architecture that allows optimized data path to the file system metadata.

Often a typical file system metadata are stored together with the data. This results in a less optimized data access because both the data and metadata are given the same priority. However, Tegile’s MASS writes and stores the filesystem metadata in very high speed, low latency DRAM and Flash SSD. The filesystem metadata probably includes some very fine grained and intimate details about the mapping of blocks and pages to the respective capacity Flash SSDs and the mechanical HDDs. (Note: I made an educated guess here and I would be happy if someone corrected me)

Going a bit deeper, the DRAM in the Tegile hybrid storage array is used as a L1 Read Cache, while Flash SSDs are used as a L2 Read and Write Cache. Tegile takes further consideration that the Flash SSDs used for this caching purpose are different from the denser and higher capacity Flash SSDs used for storing data. These Flash SSDs for caching are obviously the faster, lower latency type of eMLCs and in the future, might be replaced by PCIe Flash optimized by NVMe.

Tegile DRAM-Flash Caching

This approach gives absolute priority, and near-instant access to the filesystem’s metadata, making the Tegile data access incredibly fast and efficient.

Tegile’s Media Management capabilities excite me. This is because it treats every single Flash SSD in the storage array with very precise organization of 3 types of data patterns.

  1. Write caching, which is high I/O is focused on a small segment of the drive
  2. Metadata caching, which has both Read and Write I/O  is targeted to a slight larger segment of the drive
  3. Data is laid out on the rest of the capacity of the drive

Drilling deeper, the write caching (in item 1 above) high I/O writes are targeted at the drive segment’s range which is over-provisioned for greater efficiency and care. At the same time, the garbage collection(GC) of this segment is handled by the respective drive’s controller. This is important because the controller will be performing the GC function without inducing unnecessary latency to the storage array processing cycles, giving further boost to Tegile’s already awesome prowess.

In addition to that, IntelliFlash ™ aligns every block and every page exactly to each segment and each page boundary of the drives. This reduces block and page segmentation, and thereby reduces issues with file locality and free blocks locality. It also automatically adjust its block and page alignments to different drive types and models. Therefore, I believe, it would know how to align itself to a 512-bytes or a 520-bytes sector drives.

The Media Management function also has advanced cell care. The wear-leveling takes on a newer level of advancement where how the efficient organization of blocks and pages to the drives reduces additional and often unnecessary erase and rewrites. Furthermore, the use of Inline Compression and Inline Deduplication also reduces the number of writes to drives media, increasing their longevity.

Tegile Inline Compression and Deduplication

Compression and deduplication are 2 very important technology features in almost all flash arrays. Likewise, these 2 technologies are crucial in the performance of Tegile storage systems. They are both inline i.e – Inline Compression and Inline Deduplication, and therefore both are boosted by the multi-core CPUs as well as the fast DRAM memory.

I don’t have the secret sauce formula of how Tegile designed their inline compression and deduplication. But there’s a very good article of how Tegile viewed their method of data reduction for compression and deduplication. Check out their blog here.

The metadata of data access of each and every customer is probably feeding into their Intellicare, a cloud-based customer care program. Intellicare is another a strong differentiator in Tegile’s offering.

Oh, did I mentioned they are unified storage as well with both SAN and NAS, including SMB 3.0 support?

I left Tegile that afternoon on November 5th feeling happy. I was pleased to catch up with Narayan Venkat, my old friend from NetApp, who is now their Chief Marketing Officer. I was equally pleased to see Tegile advancing ZFS further than the others I have known. With so much technological advancement and more coming, the world is their oyster.

The big boys better be flash friendly

An interesting article came up in the news this week. The article, from the ever popular The Register, mentioned 3 up and rising storage stars, Nimble Storage, Tintri and Tegile, and their assault on a flash strategy “blind spot” of the big boys, notably EMC and NetApp.

I have known about Nimble Storage and Tintri for a couple of years now, and I did take some time to read up on their storage technology offering. Tegile is new to me when it appeared on my radar after SearchStorage.com announced as the Gold Winner of the enterprise storage category for 2012.

The Register article intriqued me because it implied that these traditional storage vendors such as EMC and NetApp are probably doing a “band-aid” when putting together their flash storage strategy. And typically, I see these strategic concepts introduced by these 2 vendors:

  1. Have a server-side cache strategy by putting a PCIe card on the hosting server
  2. Have a network-based all-flash caching area
  3. Have a PCIe-based flash card on the storage system
  4. Have solid state drives (SSDs) in its disk shelves enclosures

In (1), EMC has VFCache (the server side caching software has been renamed to XtremSW Cache and under repackaging with the Xtrem brand name) and NetApp has it FlashAccel solution. Previously, as I was informed, FlashAccel was using the FusionIO ioTurbine solution but just days ago, NetApp expanded the LSI Nytro WarpDrive into its FlashAccel solution as well. The main objective of a server-side caching strategy using flash is to accelerate mostly read-based I/O operations for specific application workloads at the server side.

Continue reading