The engineering of Elastifile

[Preamble: I was a delegate of Storage Field Day 12. My expenses, travel and accommodation were paid for by GestaltIT, the organizer and I was not obligated to blog or promote the technologies presented in this event]

When it comes to large scale storage capacity requirements with distributed cloud and on-premise capability, object storage is all the rage. Amazon Web Services started the object-based S3 storage service more than a decade ago, and the romance with object storage started.

Today, there are hundreds of object-based storage vendors out there, touting features after features of invincibility. But after researching and reading through many design and architecture papers, I found that many object-based storage technology vendors began to sound the same.

At the back of my mind, object storage is not easy when it comes to most applications integration. Yes, there is a new breed of cloud-based applications with RESTful CRUD API operations to access object storage, but most applications still rely on file systems to access storage for capacity, performance and protection.

These CRUD and CRUD-like APIs are the common semantics of interfacing object storage platforms. But many, many real-world applications do not have the object semantics to interface with storage. They are mostly designed to interface and interact with file systems, and secretly, I believe many application developers and users want a file system interface to storage. It does not matter if the storage is on-premise or in the cloud.

Let’s not kid ourselves. We are most natural when we work with files and folders.

Implementing object storage also denies us the ability to optimally utilize Flash and solid state storage on-premise when the compute is in the cloud. Similarly, when the compute is on-premise and the flash-based object storage is in the cloud, you get a mismatch of performance and availability requirements as well. In the end, there has to be a compromise.

Another “feature” of object storage is its poor ability to handle transactional data. Most of the object storage do not allow modification of data once the object has been created. Putting a NAS front (aka a NAS gateway) does not take away the fact that it is still object-based storage at the very core of the infrastructure, regardless if it is on-premise or in the cloud.

Resiliency, latency and scalability are the greatest challenges when we want to build a true globally distributed storage or data services platform. Object storage can be resilient and it can scale, but it has to compromise performance and latency to be so. And managing object storage will not be as natural as to managing a file system with folders and files.

Enter Elastifile.

Continue reading

Solid in the Fire

December 22 2015: I kept this blog in draft for 6 months. Now I am releasing it as NetApp acquires Solidfire.

真金不怕紅爐火

The above is an old Chinese adage which means “True Gold fears no Fire“. That is how I would describe my revisited view and assessment of SolidFire, a high performance All-Flash array vendor which is starting to make its presence felt in South Asia.

I first blogged about SolidFire 3 years ago, and I have been following the company closely as more and more All-Flash array players entered the market over the 3 years. Many rode on the hype and momentum of flash storage, and as a result, muddied and convoluted the storage infrastructure market understanding. It seems to me spin marketing ruled the day and users could not make a difference between vendor A and vendor B, and C and D, and so on….

I have been often asked, which is the best All-Flash array today. I have always hesitated to say which is the best because there aren’t much to say, except for 2-3 well entrenched vendors. Pure Storage and EMC XtremIO come to mind but the one that had stayed under the enterprise storage radar was SolidFire, until now.

SolidFire Logo

Continue reading

The reverse wars – DAS vs NAS vs SAN

It has been quite an interesting 2 decades.

In the beginning (starting in the early to mid-90s), SAN (Storage Area Network) was the dominant architecture. DAS (Direct Attached Storage) was on the wane as the channel-like throughput of Fibre Channel protocol coupled by the million-device addressing of FC obliterated parallel SCSI, which was only able to handle 16 devices and throughput up to 80 (later on 160 and 320) MB/sec.

NAS, defined by CIFS/SMB and NFS protocols – was happily chugging along the 100 Mbit/sec network, and occasionally getting sucked into the arguments about why SAN was better than NAS. I was already heavily dipped into NFS, because I was pretty much a SunOS/Solaris bigot back then.

When I joined NetApp in Malaysia in 2000, that NAS-SAN wars were going on, waiting for me. NetApp (or Network Appliance as it was known then) was trying to grow beyond its dot-com roots, into the enterprise space and guys like EMC and HDS were frequently trying to put NetApp down.

It’s a toy”  was the most common jibe I got in regular engagements until EMC suddenly decided to attack Network Appliance directly with their EMC CLARiiON IP4700. EMC guys would fondly remember this as the “NetApp killer“. Continue reading

The big boys better be flash friendly

An interesting article came up in the news this week. The article, from the ever popular The Register, mentioned 3 up and rising storage stars, Nimble Storage, Tintri and Tegile, and their assault on a flash strategy “blind spot” of the big boys, notably EMC and NetApp.

I have known about Nimble Storage and Tintri for a couple of years now, and I did take some time to read up on their storage technology offering. Tegile is new to me when it appeared on my radar after SearchStorage.com announced as the Gold Winner of the enterprise storage category for 2012.

The Register article intriqued me because it implied that these traditional storage vendors such as EMC and NetApp are probably doing a “band-aid” when putting together their flash storage strategy. And typically, I see these strategic concepts introduced by these 2 vendors:

  1. Have a server-side cache strategy by putting a PCIe card on the hosting server
  2. Have a network-based all-flash caching area
  3. Have a PCIe-based flash card on the storage system
  4. Have solid state drives (SSDs) in its disk shelves enclosures

In (1), EMC has VFCache (the server side caching software has been renamed to XtremSW Cache and under repackaging with the Xtrem brand name) and NetApp has it FlashAccel solution. Previously, as I was informed, FlashAccel was using the FusionIO ioTurbine solution but just days ago, NetApp expanded the LSI Nytro WarpDrive into its FlashAccel solution as well. The main objective of a server-side caching strategy using flash is to accelerate mostly read-based I/O operations for specific application workloads at the server side.

Continue reading

Xtreme future?

EMC acquisition of XtremIO sent shockwaves across the industry. The news of the acquisition, reported costing EMC USD$430 million can be found here, here and here.

The news of EMC’s would be acquisition a few weeks ago was an open secret and rumour has it that NetApp was eyeing XtremIO as well. Looks like EMC has beaten NetApp to it yet again.

The interesting part was of course, the price. USD$430 million is a very high price to pay for a stealthy, 2-year old company which has 2 rounds of funding totaling USD$25 million. Why such a large amount?

XtremIO has a talented team of engineers; the notable ones being Yaron Segev and Shahar Frank. They have their background in InfiniBand, and Shahar Frank was the chief architect of Exanet scale-out NAS (which was acquired by Dell). However, as quoted by 451Group, XtremeIO is building an all-flash SAN array that “provides consistently high performance, high levels of flash endurance, and advanced functionality around thin provisioning, de-dupe and space-efficient snapshots“.

Furthermore, XtremeIO has developed a real-time inline deduplication engine that does not degrade performance. It does this by spreading the write I/Os over the entire array. There is little information about this deduplication engine, but I bet XtremIO has developed a real-time, inherent deduplication file system that spreads all the I/Os to balance the wear-leveling as well as having scaling performance. I bet XtremIO will dedupe everything that it stores, has a B+ tree, copy-on-write file system with a super-duper efficient hashing algorithm for address mapping (pointers) with this deduplication file system. Ok, ok, I am getting carried away here, because it is likely that I will be wrong, but I can imagine, can’t I? Continue reading