A conceptual distributed enterprise HCI with open source software

Cloud computing has changed everything, at least at the infrastructure level. Kubernetes is changing everything as well, at the application level. Enterprises are attracted by tenets of cloud computing and thus, cloud adoption has escalated. But it does not have to be a zero-sum game. Hybrid computing can give enterprises a balanced choice, and they can take advantage of the best of both worlds.

Open Source has changed everything too because organizations now has a choice to balance their costs and expenditures with top enterprise-grade software. The challenge is what can organizations do to put these pieces together using open source software? Integration of open source infrastructure software and applications can be complex and costly.

The next version of HCI

Hyperconverged Infrastructure (HCI) also changed the game. Integration of compute, network and storage became easier, more seamless and less costly when HCI entered the market. Wrapped with a single control plane, the HCI management component can orchestrate VM (virtual machine) resources without much friction. That was HCI 1.0.

But HCI 1.0 was challenged, because several key components of its architecture were based on DAS (direct attached) storage. Scaling storage from a capacity point of view was limited by storage components attached to the HCI architecture. Some storage vendors decided to be creative and created dHCI (disaggregated HCI). If you break down the components one by one, in my opinion, dHCI is just a SAN (storage area network) to HCI. Maybe this should be HCI 1.5.

A new version of an HCI architecture is swimming in as Angelfish

Kubernetes came into the HCI picture in recent years. Without the weights and dependencies of VMs and DAS at the HCI server layer, lightweight containers orchestrated, mostly by, Kubernetes, made distribution of compute easier. From on-premises to cloud and in between, compute resources can easily spun up or down anywhere.

Continue reading

How well do you know your data and the storage platform that processes the data

Last week was consumed by many conversations on this topic. I was quite jaded, really. Unfortunately many still take a very simplistic view of all the storage technology, or should I say over-marketing of the storage technology. So much so that the end users make incredible assumptions of the benefits of a storage array or software defined storage platform or even cloud storage. And too often caveats of turning on a feature and tuning a configuration to the max are discarded or neglected. Regards for good storage and data management best practices? What’s that?

I share some of my thoughts handling conversations like these and try to set the right expectations rather than overhype a feature or a function in the data storage services.

Complex data networks and the storage services that serve it

I/O Characteristics

Applications and workloads (A&W) read and write from the data storage services platforms. These could be local DAS (direct access storage), network storage arrays in SAN and NAS, and now objects, or from cloud storage services. Regardless of structured or unstructured data, different A&Ws have different behavioural I/O patterns in accessing data from storage. Therefore storage has to be configured at best to match these patterns, so that it can perform optimally for these A&Ws. Without going into deep details, here are a few to think about:

  • Random and Sequential patterns
  • Block sizes of these A&Ws ranging from typically 4K to 1024K.
  • Causal effects of synchronous and asynchronous I/Os to and from the storage

Continue reading

OpenZFS with Object Storage

At AWS re:Invent last week, Amazon Web Services announced Amazon FSx for OpenZFS. This is the 4th managed service under the Amazon FSx umbrella, joining NetApp® ONTAP™, Lustre and Windows File Server. The highly scalable OpenZFS filesystem can provide high throughput and IOPS bandwidth to Amazon EC2, ECS, EKS and VMware® Cloud on AWS.

I am assuming the AWS OpenZFS uses EBS as the block storage backend, given the announcement that it can deliver 4GB/sec of throughput and 160,000 IOPS from the “drives” without caching. How the OpenZFS is provisioned to the AWS clients is well documented in this blog here. It is an absolutely joy (for me) to see the open source OpenZFS filesystem getting the validation and recognization from AWS. This is one hell of a filesystem.

But this blog isn’t about AWS FSx for OpenZFS with block storage. It is about what is coming, and eventually AWS FSx for OpenZFS could expand into AWS’s proficient S3 storage as well.  Can OpenZFS integrate with an S3 object storage backend? This blog looks into the burning question.

In the recently concluded OpenZFS Developer Summit 2021, one of the topics was “ZFS on Object Storage“, and the short answer is a resounding YES!

OpenZFS Developer Summit 2021

Continue reading

Open Source Storage Technology Crafters

The conversation often starts with a challenge. “What’s so great about open source storage technology?

For the casual end users of storage systems, regardless of SAN (definitely not Fibre Channel) or NAS on-premises, or getting “files” from the personal cloud storage like Dropbox, OneDrive et al., there is a strong presumption that open source storage technology is cheap and flaky. This is not helped with the diet of consumer brands of NAS in the market, where the price is cheap, but the storage offering with capabilities, reliability and performance are found to be wanting. Thus this notion floats its way to the business and enterprise users, and often ended up with a negative perception of open source storage technology.

Highway Signpost with Open Source wording

Storage Assemblers

Anybody can “build” a storage system with open source storage software. Put the software together with any commodity x86 server, and it can function with the basic storage services. Most open source storage software can do the job pretty well. However, once the completed storage technology is put together, can it do the job well enough to serve a business critical end user? I have plenty of sob stories from end users I have spoken to in these many years in the industry related to so-called “enterprise” storage vendors. I wrote a few blogs in the past that related to these sad situations:

We have such storage offerings rigged with cybersecurity risks and holes too. In a recent Unit 42 report, 250,000 NAS devices are vulnerable and exposed to the public Internet. The brands in question are mentioned in the report.

I would categorize these as storage assemblers.

Continue reading

Enterprise Storage is not just a Label

I have many anecdotes around the topic of Enterprise Storage, but the conversations in the past 2 weeks made it important for me to share this.

Enterprise Storage is …

Amusing, painful, angry

I get riled up whenever people do not want to be educated about Enterprise Storage. Here are a few that happened in the last 2 weeks.

[ Story #1 ]

A guy was building his own storage for cryptocurrency. He was informed by his supplier that the RAID card was enterprise, and he could get the best performance using “Enterprise” RAID-0.

  • Well, “Enterprise” RAID-0 volume crashed, and he lost all data. Painfully, he said he lost a hefty sum financially

[ Story #2 ]

A media company complained about the reliability of previous storage vendor. The GM was shopping around and was told that there are “Enterprise” SATA drives and the reliability is as good, if not better than SAS drives.

  • The company wanted a fully reliable Enterprise Storage system with 99.999% availability, and yet the SATA interface was not meant to build a more highly reliable enterprise storage. The GM insisted to use “Enterprise” SATA drives for his “enterprise” storage system instead of SAS.  

[ Story #3 ]

An IT admin of a manufacturing company claimed that they had an “Enterprise Storage” system for a few years, and could not figure out why his hard disk drives would die every 12-15 months.

  • He figured out that the drives supplied by his vendor were consumer SATA drives, even though he was told it was an “Enterprise Storage” system when he bought the system.

Continue reading

Layers in Storage – For better or worse

Storage arrays and storage services are built upon by layers and layers beneath its architecture. The physical components of hard disk drives and solid states are abstracted into RAID volumes, virtualized into other storage constructs before they are exposed as shares/exports, LUNs or objects to the network.

Everyone in the storage networking industry, is cognizant of the layers and it is the foundation of knowledge and experience. The public cloud storage services side is the same, albeit more opaque. Nevertheless, both have layers.

In the early 2000s, SNIA® Technical Council outlined a blueprint of the SNIA® Shared Storage Model, a framework describing layers and properties of a storage system and its services. It was similar to the OSI 7-layer model for networking. The framework helped many industry professionals and practitioners shaped their understanding and the development of knowledge in their respective fields. The layering scheme of the SNIA® Shared Storage Model is shown below:

SNIA Shared Storage Model – The layering scheme

Storage vendors layering scheme

While SNIA® storage layers were generic and open, each storage vendor had their own proprietary implementation of storage layers. Some of these architectures are simple, but some, I find a bit too complex and convoluted.

Here is an example of the layers of the Automated Volume Management (AVM) architecture of the EMC® Celerra®.

EMC Celerra AVM Layering Scheme

I would often scratch my head about AVM. Disks were grouped into RAID groups, which are LUNs (Logical Unit Numbers). Then they were defined as Celerra® dvols (disk volumes), and stripes of the dvols were consolidated into a storage pool.

From the pool, a piece of a storage capacity construct, called a slice volume, were combined with other slice volumes into a metavolume which eventually was presented as a file system to the network and their respective NAS clients. Explaining this took an effort because I was the IP Storage product manager for EMC® between 2007 – 2009. It was a far cry from the simplicity of NetApp® ONTAP 7 architecture of RAID groups and volumes, and the WAFL® (Write Anywhere File Layout) filesystem.

Another complicated layered framework I often gripe about is Ceph. Here is a look of how the layers of CephFS is constructed.

Ceph Storage Layered Framework

I work with the OpenZFS filesystem a lot. It is something I am rather familiar with, and the layered structure of the ZFS filesystem is essentially simpler.

Storage architecture mixology

Engineers are bizarre when they get too creative. They have a can do attitude that transcends the boundaries of practicality sometimes, and boggles many minds. This is what happens when they have their own mixology ideas.

Recently I spoke to two magnanimous persons who had the idea of providing Ceph iSCSI LUNs to the ZFS filesystem in order to use the simplicity of NAS file sharing capabilities in TrueNAS® CORE. From their own words, Ceph NAS capabilities sucked. I had to draw their whole idea out in a Powerpoint and this is the architecture I got from the conversation.

There are 3 different storage subsystems here just to provide NAS. As if Ceph layers aren’t complicated enough, the iSCSI LUNs from Ceph are presented as Cinder volumes to the KVM hypervisor (or VMware® ESXi) through the Cinder driver. Cinder is the persistent storage volume subsystem of the Openstack® project. The Cinder volumes/hypervisor datastore are virtualized as vdisks to the respective VMs installed with TrueNAS® CORE and OpenZFS filesystem. From the TrueNAS® CORE, shares and exports are provisioned via the SMB and NFS protocols to Windows and Linux respectively.

It works! As I was told, it worked!

A.P.P.A.R.M.S.C. considerations

Continuing from the layered framework described above for NAS, other aspects beside the technical work have to be considered, even when it can work technically.

I often use a set of diligent data storage focal points when considering a good storage design and implementation. This is the A.P.P.A.R.M.S.C. Take for instance Protection as one of the points and snapshot is the technology to use.

Snapshots can be executed at the ZFS level on the TrueNAS® CORE subsystem. Snapshots can be trigged at the volume level in Openstack® subsystem and likewise, rbd snapshots at the Ceph subsystem. The question is, which snapshot at which storage subsystem is the most valuable to the operations and business? Do you run all 3 snapshots? How do you execute them in succession in a scheduled policy?

In terms of performance, can it truly maximize its potential? Can it churn out the best IOPS, and deliver at wire speed? What is the latency we can expect with so many layers from 3 different storage subsystems?

And supporting this said architecture would be a nightmare. Where do you even start the troubleshooting?

Those are just a few considerations and questions to think about when such a layered storage architecture along. IMHO, such a design was over-engineered. I was tempted to say “Just because you can, doesn’t mean you should

Elegance in Simplicity

Einstein (I think) quoted:

Einstein’s quote on simplicity and complexity

I am not saying that having too many layers is wrong. Having a heavily layered architecture works for many storage solutions out there, where they are often masked with a simple and intuitive UI. But in yours truly point of view, as a storage architecture enthusiast and connoisseur, there is beauty and elegance in simple designs.

The purpose here is to promote better understanding of the storage layers, and how they integrate and interact with each other to deliver the data services to the network. In the end, that is how most storage architectures are built.

 

TrueNAS – The Secure Data Platform for EasiShare

The Enterprise File Sync and Share (EFSS) EasiShare presence is growing rapidly in the region, as enterprises and organizations are quickly redefining the boundaries of the new workspace. Work files and folders are no longer confined to the shared network drives within the local area network. It is going beyond to the “Work from Anywhere” phenomenon that is quickly becoming the way of life. Breaking away from the usual IT security protection creates a new challenge, but EasiShare was conceived with security baked into its DNA. With the recent release, Version 10, file sharing security and resiliency are stronger than ever.

[ Note: I have blogged about EasiShare previously. Check out the 2 links below ]

Public clouds are the obvious choice but for organizations to protect their work files, and keep data secure, services like Dropbox for Business, Microsoft® Office 365 with OneDrive and Google® Workspace are not exactly the kind of file sharing with security as their top priority. A case in point was the 13-hour disruption to Wasabi Cloud last week, where the public cloud storage provider’s domain name, wasabisys.com, was suspended by their domain name registrar because of malware discrepancy at one of its endpoints. There were other high profile cases too.

This is where EasiShare shines, because it is a secure, private EFSS solution for the enterprise and beyond, because business resiliency is in the hands and control of the organization that owns it, not the public cloud service providers.

EasiShare unifies with TrueNAS for secure business resiliency

EasiShare is just one several key business solutions iXsystems™ in Asia Pacific Japan is working closely with, and there is a strong, symbiotic integration with the TrueNAS® platform. Both have strong security features that fortify business resiliency, especially when facing the rampant ransomware scourge.

Value of a Single Unified Data Services Platform

A storage array is not a solution. It is just a box that most vendors push to sell. A storage must be a Data Services Platform. Readers of my blog would know that I have spoken about the Data Services Platform 3 years ago and you can read about it:

Continue reading

Ransomware recovery with TrueNAS ZFS snapshots

This is really an excuse to install and play around with TrueNAS® CORE 12.0.

I had a few “self assigned homework exercises” I have to do this weekend. I was planning to do a video webcast with an EFSS vendor soon, and the theme should be around ransomware. Then one of the iXsystems™ resellers, unrelated to the first exercise, was talking about this ransomware messaging yesterday after we did a technical training with them. And this weekend is coming on a bit light as well. So I thought I could bring all these things, including checking out the TrueNAS® CORE 12.0, together in a video (using Free Cam), of which I would do for the first time as well. WOW! I can kill 4 birds with one stone! All together in one blog!

It could be Adam Brown 89 or worse

Trust me. You do not want AdamBrown89 as your friend. Or his thousands of ransomware friends.

When (not if) you are infected by ransomware, you get a friendly message like this in the screenshot below. I got this from a local company who asked for my help a few months ago.

AdamBrown89 ransomware message

AdamBrown89 ransomware message

I have written about this before. NAS (Network Attached Storage) has become a gold mine for ransomware attackers, and many entry level NAS products are heavily inflicted with security flaws and vulnerabilities. Here are a few notable articles in year 2020 alone. [ Note: This has been my journal of the security flaws of NAS devices from 2020 onwards ]

Continue reading

Green Storage? Meh!

Something triggered my thoughts a few days ago. A few of us got together talking about climate change and a friend asked how green was the datacenter in IT. With cloud computing booming, I would say that green computing isn’t really the hottest thing at present. That in turn, leads us to one of the most voracious energy beasts in the datacenter, storage. Where is green storage in the equation?

What is green?

Over the past decade, several storage related technologies were touted as more energy efficient. These include

  • Tape – when tapes are offline, they do not consume power and do not require cooling
  • Virtualization – Virtualization reduces the number of servers and desktops, and of course storage too
  • MAID (Massive Array of Independent Disks) – the arrays spin down the HDDs if idle for a period of time
  • SSD (Solid State Drives) – Compared to HDDs, SSDs consume much less power, and overall reduce the cooling needs
  • Data Footprint Reduction – Deduplication, compression and other technologies to reduce copies of data
  • SMR (Shingled Magnetic Recording) Drives – Higher areal density means less drives but limited by physics.

The largest gorilla in storage technology

HDDs still dominate the market and they are the biggest producers of heat and vibration in a storage array, along with the redundant power supplies and fans. Until and unless SSDs dominate, we have to live with the fact that storage disk drives are not green. The statistics from Statistica below forecasts that in 2021, the shipment of SSDs will surpass HDDs.

Today the areal density of HDDs have increased. With SMR (shingled magnetic recording), the areal density jumped about 25% more than the 1Tb/inch (Terabit per inch) in the CMR (conventional magnetic recording) drives. The largest SMR in the market today is 16TB from Seagate with 18TB SMR in the horizon. That capacity is going to grow significantly when EAMR (energy assisted magnetic recording) – which counts heat assisted and microwave assisted – drives enter the market next year. The areal density will grow to 1.6Tb/inch with a roadmap to 4.0Tb/inch. Continue reading

Brainy Commvault

[Disclosure: I was invited by Commvault as a Media person and Social Ambassador to their Commvault GO 2019 Conference and also a Tech Field Day eXtra delegate from Oct 13-17, 2019 in the Denver CO, USA. My expenses, travel, accommodation and conference fees were covered by Commvault, the organizer and I was not obligated to blog or promote their technologies presented at this event. The content of this blog is of my own opinions and views]

The waltz across the Commvault-Hedvig mine field will not be easy. Commvault will have a lot of open discussions about their acquisition of Hedvig and how Hedvig “primary storage platform” will fit into a “secondary storage framework” of Commvault. The outcome of this consummation is yet to appear as a structured form. The storyline will eventually form as Commvault’s diligence to define their strategy moving forward.

Day 1

Day 1 was my open day at Commvault GO. I was absorbing the first impressions of Commvault again even though this was my third Commvault GO, after Washington DC and Nashville in 2017 and 2018 respectively. There was certainly a “startup” feeling again in Commvault since the appointment of Sanjay Mirchandani as CEO 9 months ago.

A lot of excitement and buzz were generated around the metallic, the Commvault venture into Software-as-a-Service (SaaS). The SaaS solution is targeted at the mid-market for organizations with 500-2500 staff count. Its simplicity and pricing were the 2 things which gave me a good feeling all over. There is even a 45-day trial for metallic.

Getting Brainy

My Day 2 itinerary was more specific because my agenda for this trip was to seek answers to the realization of Commvault-Hedvig.

Commvault took the distinction of using the vision of a DataBrain (#databrain) to define their strategy. From the picture below, the left and right hemisphere of the DataBrain forms the Storage Management piece on the left and Data Management on the right.

Continue reading