The reverse wars – DAS vs NAS vs SAN

It has been quite an interesting 2 decades.

In the beginning (starting in the early to mid-90s), SAN (Storage Area Network) was the dominant architecture. DAS (Direct Attached Storage) was on the wane as the channel-like throughput of Fibre Channel protocol coupled by the million-device addressing of FC obliterated parallel SCSI, which was only able to handle 16 devices and throughput up to 80 (later on 160 and 320) MB/sec.

NAS, defined by CIFS/SMB and NFS protocols – was happily chugging along the 100 Mbit/sec network, and occasionally getting sucked into the arguments about why SAN was better than NAS. I was already heavily dipped into NFS, because I was pretty much a SunOS/Solaris bigot back then.

When I joined NetApp in Malaysia in 2000, that NAS-SAN wars were going on, waiting for me. NetApp (or Network Appliance as it was known then) was trying to grow beyond its dot-com roots, into the enterprise space and guys like EMC and HDS were frequently trying to put NetApp down.

It’s a toy”  was the most common jibe I got in regular engagements until EMC suddenly decided to attack Network Appliance directly with their EMC CLARiiON IP4700. EMC guys would fondly remember this as the “NetApp killer“. Continue reading

Why demote archived data access?

We are all familiar with the concept of data archiving. Passive data gets archived from production storage and are migrated to a slower and often, cheaper storage medium such tapes or SATA disks. Hence the terms nearline and offline data are created. With that, IT constantly reminds users that the archived data is infrequently accessed, and therefore, they have to accept the slower access to passive, archived data.

The business conditions have certainly changed, because the need for data to be 100% online is becoming more relevant. The new competitive nature of businesses dictates that data must be at the fingertips, because speed and agility are the new competitive advantage. Often the total amount of data, production and archived data, is into hundred of TBs, even into PetaBytes!

The industries I am familiar with – Oil & Gas, and Media & Entertainment – are facing this situation. These industries have a deluge of files, and unstructured data in its archive, and much of it dormant, inactive and sitting on old tapes of a bygone era. Yet, these files and unstructured data have the most potential to be explored, mined and analyzed to realize its value to the organization. In short, the archived data and files must be democratized!

The flip side is, when the archived files and unstructured data are coupled with a slow access interface or unreliable storage infrastructure, the value of archived data is downgraded because of the aggravated interaction between access and applications and business requirements. How would organizations value archived data more if the access path to the archived data is so damn hard???!!!

An interesting solution fell upon my lap some months ago, and putting A and B together (A + B), I believe the access path to archived data can be unbelievably of high performance, simple, transparent and most importantly, remove the BLOODY PAIN of FILE AND DATA MIGRATION!  For storage administrators and engineers familiar with data migration, especially if the size of the migration is into hundreds of TBs or even PBs, you know what I mean!

I have known this solution for some time now, because I have been avidly following its development after its founders left NetApp following their Spinnaker venture to start Avere Systems.

avere_220

Continue reading

NetApp SPECSfs record broken in 13 days


Thanks for my buddy, Chew Boon of HDS who put me on alert about the new leader of the SPECSfs benchmark results. NetApp “world record” has been broken 13 days later by Avere Systems.

Avere has posted the result of 1,564,404 NFS ops/sec with an ORT (overall response time) of 0.99 msec. This benchmark was done by 44 nodes, using 6.808 TB of memory, with 800 HDDs.

Earlier this month, NetApp touted fantastic results and quickly came out with a TR comparing their solution with EMC Isilon. Here’s a table of the comparison

 

But those numbers are quickly made irrelevant by Avere FXT, and Avere claims to have the world record title with the “smallest footprint ever”. Here’s a comparison in Avere’s blog, with some photos to boot.

 

For the details of the benchmark, click here. And the news from PR Newswire.

If you have not heard of Avere, they are basically the core team of Spinnaker. NetApp acquired Spinnaker in 2003 to create the clustered file systems from the Spinnaker technology. The development and integration of Spinnaker into NetApp’s Data ONTAP took years and was buggy, and this gave the legroom for competitors like Isilon to take market share in the clustered NAS/scale-out NAS landscape.

Meanwhile, NetApp finally came did come good with the Spinnaker technology and with ONTAP 8.0.1 and 8.1, the codes of both platforms merged into one.

The Spinnaker team went on develop a new technology called the “A-3 Architecture” (shown below) and positioned itself as a NAS Accelerator.

avere-nas-1

The company has 2 series of funding and now has a high performance systems to compete with the big boys. The name, Avere Systems, is still pretty much unknown in this part of the world and this “world record” will help position them stronger.

But as I have said before, benchmarking are just ways to have bigger bragging rights. It is a game of leapfrogging, and pretty soon this Avere record will be broken. It is nice while it lasts.