Pure Electric!

I didn’t get a chance to attend Pure Accelerate event last month. From the blogs and tweets of my friends, Pure Accelerate was an awesome event. When I got the email invitation for the localized Pure Live! event in Kuala Lumpur, I told myself that I have to attend the event.

The event was yesterday, and I was not disappointed. Coming off a strong fiscal Q1 2018, it has appeared that Pure Storage has gotten many things together, chugging full steam at all fronts.

When Pure Storage first come out, I was one of the early bloggers who took a fancy of them. My 2011 blog mentioned the storage luminaries in their team. Since then, they have come a long way. And it was apt that on the same morning yesterday, the latest Gartner Magic Quadrant for Solid State Arrays 2017 was released.

Continue reading

The changing face of storage

No, we are not a storage company anymore. We are a data management company now.

I was reading a Forbes article interviewing NetApp’s CIO, Bill Miller. It was titled:

NetApp’s CIO Helps Drive Company’s Shift From Data Storage To Data Management

I was fairly surprised about the time it took for that mindset shift messaging from storage to data management. I am sure that NetApp has been doing that for years internally.

To me, the writing has been in the wall for years. But weak perception of storage, at least in this part of Asia, still lingers as that clunky, behind the glassed walls and crufty closets, noisy box of full of hard disk drives lodged with snakes and snakes of orange, turquoise or white cables. ūüėČ

The article may come as a revelation to some, but the world of storage has changed indefinitely. The blurring of the lines began when software defined storage, or even earlier in the form of storage virtualization, took form. I even came up with my definition a couple of years ago about the changing face of storage framework. Instead of calling it data management, I called the new storage framework,  the Data Services Platform.

So, this is my version of the storage technology platform of today. This is the Data Services Platform I have been touting to many for the last couple of years. It is not just storage technology anymore; it is much more than that.

Continue reading

The engineering of Elastifile

[Preamble: I was a delegate of Storage Field Day 12. My expenses, travel and accommodation were paid for by GestaltIT, the organizer and I was not obligated to blog or promote the technologies presented in this event]

When it comes to large scale storage capacity requirements with distributed cloud and on-premise capability, object storage is all the rage. Amazon Web Services started the object-based S3 storage service more than a decade ago, and the romance with object storage started.

Today, there are hundreds of object-based storage vendors out there, touting features after features of invincibility. But after researching and reading through many design and architecture papers, I found that many object-based storage technology vendors began to sound the same.

At the back of my mind, object storage is not easy when it comes to most applications integration. Yes, there is a new breed of cloud-based applications with RESTful CRUD API operations to access object storage, but most applications still rely on file systems to access storage for capacity, performance and protection.

These CRUD and CRUD-like APIs are the common semantics of interfacing object storage platforms. But many, many real-world applications do not have the object semantics to interface with storage. They are mostly designed to interface and interact with file systems, and secretly, I believe many application developers and users want a file system interface to storage. It does not matter if the storage is on-premise or in the cloud.

Let’s not kid ourselves. We are most natural when we work with files and folders.

Implementing object storage also denies us the ability to optimally utilize Flash and solid state storage on-premise when the compute is in the cloud. Similarly, when the compute is on-premise and the flash-based object storage is in the cloud, you get a mismatch of performance and availability requirements as well. In the end, there has to be a compromise.

Another “feature” of object storage is its poor ability to handle transactional data. Most of the object storage do not allow modification of data once the object has been created. Putting a NAS front (aka a NAS gateway) does not take away the fact that it is still object-based storage at the very core of the infrastructure, regardless if it is on-premise or in the cloud.

Resiliency, latency and scalability are the greatest challenges when we want to build a true globally distributed storage or data services platform. Object storage can be resilient and it can scale, but it has to compromise performance and latency to be so. And managing object storage will not be as natural as to managing a file system with folders and files.

Enter Elastifile.

Continue reading

FlashForward to Beyond

The flash frenzy has reached its zenith in 2016. We now no longer are interested in listening to storage technology vendors touting the power of solid state storage (NAND Flash included) over spinning drives.

The capacity of 3D NAND Flash SSDs has reached a whopping 15.3TB (that is even bigger than the 12TB 7200RPM HDDs of today), and with deduplication and compression, the storage efficiency has reached a conservative 4:1 or 5:1. Effective capacity of most mid-end storage arrays can easily reach 1-2 Petabytes.

And flash and hybrid platforms have reached maturity in these few short years. So what is next?

The landscape has obviously changed. The performance landscape, the capacity landscape and all related to the storage data points have changed. And the speed of SSDs together with the up-and-coming NVMe and NVDIMM technology in new storage array controllers are also shifting the data bottlenecks to another part of the architecture. The development of I/O communications and interfaces has to change as well, to take advantage of the asynchronous I/Os in storage tiering and caching using NAND Flash.

With this mature and well understood landscape, it is time to take Flash to the next level. This next level comes in the form of an exciting end-user conference in Singapore on 25th April 2017. It is called FlashForward.

The 2016 FlashForward event in Europe has already garnered great support from the cream of the storage technologists around the world, and had fantastic feedbacks from the end-user attendees. That FlashForward event has also seen the birth of an international business and technology exchange in its inaugural introduction.  Yes, it is time to learn from the field experts, and it is time to build on the Flash Platform for new Data Services.

From the sponsorship package brochure I have received, it is definitely an event not to be missed.

The FlashForward Conference in Singapore is exquisitely procured by Evito Ltd, under the stewardship of Mr. Paul Talbut. Paul is a very seasoned veteran in the global circuit as an SNIA director of several initiatives. He has been immensely involved in the development of several SNIA chapters around the world, including South Asia, Malaysia, India, China, and even Brazil. He also leads by example with the SNIA Global Steering Committee (GSC); he is the SNIA Global Education Director and at one time, SNIA DPCO (Data Protection & Capacity Optimization) global proctor.

I have had the honour working with Paul for almost 8 years now, and I am sure he will lead the FlashForward Conference with valuable insights and experiences.

This is probably the greatest period for the industry and end users to get involved in the FlashForward Conference. For one, it is endorsed by SNIA, the vendor-neutral association which has been the growth beacon of the storage networking industry.

Secondly, it is the perfect opportunity for technology vendors to build their mindshare with end users and customers. And with the endorsement of the independent field experts and technology practitioners, end users would have a field day garnering approvals for their decisions, as well as learning the best practices to build upon the Flash technology they have implemented in their data center space.

The sponsorship packages are listed below, and I do encourage technology vendors, especially the All-Flash vendors to use the FlashForward conference as a platform to build their mindshare, and most of all, their branding. Continue reading

The dark ages of data is coming

A recent report intrigued me. Given the recent uprising of data, data and more data, things are getting a bit absurd about the voluminous data we are collecting and storing. The flip is that we might need all these data for analytics and getting more insight from the data.

The Veritas Darkberg report revealed that a very large percentage of the data collected and stored by organizations are useless data, unknown and unused. I captured a snapshot of the report below:

Screen Shot 2015-11-08 at 8.03.05 AM

From the screenshot above, it shows 54% of the landscape surveyed is dark data, unseen and clogging up the storage. And in an instance, the Darkberg (cross of “Dark” and “Iceberg”) report knocked a lot of sense into this whole data acquisition frenzy we are going through right now.

Continue reading

Why demote archived data access?

We are all familiar with the concept of data archiving. Passive data gets archived from production storage and are migrated to a slower and often, cheaper storage medium such tapes or SATA disks. Hence the terms nearline and offline data are created. With that, IT constantly reminds users that the archived data is infrequently accessed, and therefore, they have to accept the slower access to passive, archived data.

The business conditions have certainly changed, because the need for data to be 100% online is becoming more relevant. The new competitive nature of businesses dictates that data must be at the fingertips, because speed and agility are the new competitive advantage. Often the total amount of data, production and archived data, is into hundred of TBs, even into PetaBytes!

The industries I am familiar with РOil & Gas, and Media & Entertainment Рare facing this situation. These industries have a deluge of files, and unstructured data in its archive, and much of it dormant, inactive and sitting on old tapes of a bygone era. Yet, these files and unstructured data have the most potential to be explored, mined and analyzed to realize its value to the organization. In short, the archived data and files must be democratized!

The flip side is, when the archived files and unstructured data are coupled with a slow access interface or unreliable storage infrastructure, the value of archived data is downgraded because of the aggravated interaction between access and applications and business requirements. How would organizations value archived data more if the access path to the archived data is so damn hard???!!!

An interesting solution fell upon my lap some months ago, and putting A and B together (A + B), I believe the access path to archived data can be unbelievably of high performance, simple, transparent and most importantly, remove the BLOODY PAIN of FILE AND DATA MIGRATION!  For storage administrators and engineers familiar with data migration, especially if the size of the migration is into hundreds of TBs or even PBs, you know what I mean!

I have known this solution for some time now, because I have been avidly following its development after its founders left NetApp following their Spinnaker venture to start Avere Systems.


Continue reading

Hail Hydra!

The last of the Storage Field Day 6 on November 7th took me and the other delegates to NEC. There was an obvious, yet eerie silence among everyone about this visit. NEC? Are you kidding me?

NEC isn’t exactly THE exciting storage company in the Silicon Valley, yet I was pleasantly surprised with their HydraStorprowess. It is indeed quite a beast, with published numbers of backup throughput of 4PB/hour, and scales to 100PB of capacity. Most impressive indeed, and HydraStor deserves this blogger’s honourable architectural dissection.

HydraStor is NEC‚Äôs grid-based, scale-out¬†storage platform with an object storage backend. The technology, powered by the¬†DynamicStor ‚ĄĘ¬†software, a distributed file system laid over the HydraStor grid architecture. At the same time, it has the¬†DataRedux‚ĄĘ¬†technology that provides the global in-line deduplication as the HydraStor¬†ingests data for data protection, replication, archiving and WORM purposes. It is a massive data consolidation platform, storing gazillion loads of data (100PB you say?)¬†for short-term and long-term retention and recovery.

The architecture is indeed solid, and its data availability goes beyond traditional RAID-level resiliency. HydraStor employs their¬†proprietary erasure coding, called¬†Distributed Resilient Data‚ĄĘ. The resiliency knob can be configured to withstand 6 concurrent disks or nodes failure, but by default configured with a resiliency level of 3.

We can quickly deduce that¬†DynamicStor‚ĄĘ, DataRedux‚ĄĘ¬†and¬†Distributed Resilient Data‚ĄĘ¬†are the technology pillars of HydraStor. How do they work, and how do they work together?

Let’s look a bit deeper into the HydraStor architecture.

HydraStor is made up of 2 types of nodes:

  • Accelerator Nodes
  • Storage Nodes

The Accelerator Nodes (AN) are the access nodes. They interface with the HydraStor front end, which could be CIFS, NFS or OST (Open Storage Technology). The AN nodes chunks the in-coming data and performs in-line deduplication at a very high speed. It can reach speed of 300TB/hour, which is blazingly fast!

The AN nodes also runs DynamicStor‚ĄĘ, handling the performance heavy-lifting portion of HydraStor. The chunked data from the AN nodes are then passed on to the Storage Nodes (SN), where they are further ‚Äúdeduped in-line‚ÄĚ to determined if the chunks are unique or not. It is a¬†two-step inline deduplication process. Below is a diagram showing the ANs built above the SNs in the HydraStor grid architecture.

NEC AN & SN grid architecture


The HydraStor grid architecture is also a very scalable architecture, allow the dynamic scale-in and scale-out of both ANs and SNs. AN nodes and SN nodes can be added or removed into the system, auto-configuring and auto-optimizing while everything stays online. This capability further strengthens the reliability and the resiliency of the HydraStor.

NEC Hydrastor dynamic topology

Moving on to DataRedux‚ĄĘ. DataRedux‚ĄĘ is HydraStor‚Äôs global in-line data deduplication technology. It performs dedupe at the¬†sub-file level, with variable length window. This is performed at the¬†AN nodes and the SN nodes level,chunking and creating unique hash values.¬†All unique chunks are further compressed with a¬†modified LZ compression algorithm, shrinking the data to its optimized footprint on the disk storage. To maintain the global in-line deduplication, the¬†hash table is available across the HydraStor cluster.

NEC Deduplication & Compression

The unique data chunk resulting from deduplication and compression are then written to disks using the configured Distributed Resilient Data‚ĄĘ (DRD) algorithm, at¬†its set resiliency level.

At the junction of DRD, with erasure coding parity, the data is broken up into multiples of fragments and assigned a parity to a grouping of fragments. If the resiliency level is set to 3 (the default), the data is broken into 12 pieces, 9 data fragments + 3 parity fragments. The 3 parity fragments corresponds to the resiliency level of 3. See diagram below of the 12 fragments spread across a group of selected disks in the storage pool of the Storage Nodes.

NEC DRD erasure coding on Storage Nodes


If the HydraStor experiences a failure in the disks or nodes, and has resulted in the loss of a fragment or fragments, the DRD self-healing function will auto-rebuild and auto-reconfigure the recovered fragments in another set of disks, maintaining the level of 3 parities.

The resiliency level, as mentioned earlier, can be set up to 6, boosting the HydraStor survival factor of 6 disks or nodes failure in the grid. See below of how the autonomous DRD recovery works:

NEC Autonomous Data recovery

Despite lacking the razzle dazzle of most Silicon Valley storage startups and upstarts, credit be given where credit is due. NEC HydraStor is indeed a strong show stopper.

However, in a market that is as fickle as storage, deduplication solutions such as HydraStor, EMC Data Domain, and HP StoreOnce, are being superceded by Copy Data Management technology, touted by Actifio. It was rumoured that EMC restructured their entire BURA (Backup Recovery Archive) division to DPAD (Data Protection and Availability Division) to go after the burgeoning copy data management market.

It would be good if NEC can take notice and turn their HydraStor ‚Äúsupertanker‚ÄĚ towards the Copy Data Management market. That would be¬†something special to savour.

P/S: NEC. Sorry about the title. I just couldn‚Äôt resist it ūüėČ

Washing too much software defined

There’s been practically a firestorm when EMC announced ViPR, its own version of “software-defined storage” at EMC World last week. Whether you want to call it Virtualization Platform Re-defined or Re-imagined, competitors such as NetApp, HDS, Nexenta have taken pot-shots at EMC, and touting their own version of software-defined storage.

In the release announcement, EMC claimed the following (a cut-&-paste from the announcement):

  • The EMC ViPR Software-Defined Storage Platform uniquely provides the ability to both manage storage infrastructure (Control Plane) and the data residing within that infrastructure (Data Plane).
  • The EMC ViPR Controller leverages existing storage infrastructures for traditional workloads, but provisions new ViPR Object Data Services (with access via Amazon S3 or HDFS APIs) for next-generation workloads. ViPR Object Data Services integrate with OpenStack via Swift and can be run against enterprise or commodity storage.
  • EMC ViPR integrates tightly with VMware‚Äôs Software Defined Data Center through industry standard APIs and interoperates with Microsoft and OpenStack.

The separation of the Control Plane and the Data Plane of the ViPR allows the abstraction of 2 main layers.

Layer 1 is the abstraction of the underlying storage hardware infrastructure. Although I don’t have the full details (EMC guys please enlighten me, please!), I believe storage administrator no longer need to carve out LUNs from RAID groups or Storage Pools, striped and sliced them and further provision them into meta file systems before they are exported or shared through NAS protocols. I am , of course, quoting the underlying provisioning architecture of Celerra, which can be quite complex. Anyone who has done manual provisioning with Celerra Manager should know what I mean.

Here’s the provisioning architecture of Celerra:

Continue reading

Primary Dedupe where are you?

I am a bit surprised that primary storage deduplication has not taken off in a big way, unlike the times when the buzz of deduplication first came into being about 4 years ago.

When the first deduplication solutions first came out, it was particularly aimed at the backup data space. It is now more popularly known as secondary data deduplication, the technology has reduced the inefficiencies of backup and helped sparked the frenzy of adulation of companies like Data Domain, Exagrid, Sepaton and Quantum a few years ago. The software vendors were not left out either. Symantec, Commvault, and everyone else in town had data deduplication for backup and archiving.

It was no surprise that EMC battled NetApp and finally won the rights to acquire Data Domain for USD$2.4 billion in 2009. Today, in my opinion, the landscape of secondary data deduplication has pretty much settled and matured. Practically everyone has some sort of secondary data deduplication technology or solution in place.

But then the talk of primary data deduplication hardly cause a ripple when compared a few years ago, especially here in Malaysia. Yeah, the IT crowd is pretty fickle that way because most tend to follow the trend of the moment. Last year was Cloud Computing and now the big buzz word is Big Data.

We are here to look at technologies to solve problems, folks, and primary data deduplication technology solutions should be considered in any IT planning. And it is our job as storage networking professionals to continue to advise customers about what is relevant to their business and addressing their pain points.

I get a bit cheesed off that companies like EMC, or HDS continue to spend their marketing dollars on hyping the trends of the moment rather than using some of their funds to promote good technologies such as primary data deduplication that solve real life problems. The same goes for most IT magazines, publications and other communications mediums, rarely giving space to technologies that solves problems on the ground, and just harping on hypes, fuzz and buzz. It gets a bit too ordinary (and mundane) when they are trying too hard to be extraordinary because everyone is basically talking about the same freaking thing at the same time, over and over again. (Hmmm … I think I am speaking off topic now .. I better shut up!)

We are facing an avalanche of data. The other day, the CEO of Nexenta used the word “data tsunami” but whatever terms used do not matter. There is too much data. Secondary data deduplication solved one part of the problem and now it’s time to talk about the other part, which is data in primary storage, hence primary data deduplication.

What is out there? ¬†Who’s doing what in term of primary data deduplication?

NetApp has their A-SIS (now NetApp Dedupe) for years and they are good in my books. They talk to customers about the benefits of deduplication on their FAS filers. (Side note: I am seeing more benefits of using data compression in primary storage but I am not going to there in this entry). EMC has primary data deduplication in their Celerra years ago but they hardly talk much about it. It’s on their VNX as well but again, nobody in EMC ever speak about their primary deduplication feature.

I have always loved Ocarina Networks ECO technology and Dell don’t give much hoot about Ocarina since the acquisition in ¬†2010. The technology surfaced a few months ago in Dell DX6000G Storage Compression Node for its Object Storage Platform, but then again, all Dell talks about is their Fluid Data Architecture from the Compellent division. Hey Dell, you guys are so one-dimensional! Ocarina is a wonderful gem in their jewel case, and yet all their storage guys talk about are Compellent ¬†and EqualLogic.

Moving on … I ought to knock Oracle on the head too. ZFS has great data deduplication technology that is meant for primary data and a couple of years back, Greenbytes took that and made a solution out of it. I don’t follow what Greenbytes is doing nowadays but I do hope that the big wave of primary data deduplication will rise for companies such as Greenbytes to take off in a big way. No thanks to Oracle for ignoring another gem in ZFS and wasting their resources on pre-sales (in Malaysia) and partners (in Malaysia) that hardly know much about the immense power of ZFS.

But an unexpected source coming from Microsoft could help trigger greater interest in primary data deduplication. I have just read that the next version of Windows Server OS will have primary data deduplication integrated into NTFS. The feature will be available in Windows 8 and the architectural view is shown below:

The primary data deduplication in NTFS will be a feature add-on for Windows Server users. It is implemented as a filter driver on a per volume basis, with each volume a complete, self describing unit. It is cluster aware, and fully crash consistent on all operations.

The technology is Microsoft’s own technology, built from scratch and will be working to position Hyper-V as an strong enterprise choice in its battle for the server virtualization space with VMware. Mind you, VMware already has a big, big lead and this is just something that Microsoft must do-or-die to keep Hyper-V playing catch-up. Otherwise, the gap between Microsoft and VMware in the server virtualization space will be even greater.

I don’t have the full details of this but I read that the NTFS primary deduplication chunk sizes will be between 32KB to 128KB and it will be post-processing.

With Microsoft introducing their technology soon, I hope primary data deduplication will get some deserving accolades because I think most companies are really not doing justice to the great technologies that they have in their jewel cases. And I hope Microsoft, with all its marketing savviness and adeptness, will do some justice to a technology that solves real life’s data problems.

I bid you good luck – Primary Data Deduplication! You deserved better.

Captain Dynamo Storage System

My research on file systems brought me to an very interesting piece of article. It is titled “Dynamo: Amazon’s Highly Available Key-Value Store” dated 2007.

Yes, this is an internal¬†storage systems designed and developed in Amazon to scale and support Amazon Web Services (AWS). It is a very complex piece of technology and the paper is highly technical (not for the faint of heart). And of all places, Amazon is probably the last place you think you would find such smart technology, but it’s true. AWS engineers are slowly revealing the many of their innovations (think Amazon Silk browser technology).

And it appears that many of the latest cloud-based computing and services companies such as Amazon, Google and many others have been developing new methods of storing data objects. These methods are very different from the traditional methods of storing data, and many are no longer adopting the relational database model (RDBMS) to scale their business.

The traditional 3-tier architecture often adopted by web-based (before the advent of “cloud”), is evolving. As shown in the diagram below:

the foundation tier is usually a relational database (or a distributed relational database), communicating with the back-end storage (usually a SAN).

All that is changing because the relational database model is not keeping up with the tremendous pace of the proliferation of web-based and cloud-based objects or unstructured data. As explained by Alex Iskold, a writer of ReadWriteWeb, there are scalability issues with the conventional relational database.


Before I get to the scalability issues mentioned in the above diagram, let me set the floor for discussion.

For theoretical schoolers of relational database, the term ACID¬†defines and guarantees the transactional reliability of relational databases. ACID stands for Atomicity, Consistency, Isolation and Durability. According to Wikipedia, “transactions provide an “all-or-nothing” proposition, stating that each work-unit performed in a database must either complete in its entirety or have no effect whatsoever. Further, the system must isolate each transaction from other transactions, results must conform to existing constraints in the database, and transactions that complete successfully must get written to durable storage.”

ACID has been the cornerstone of relational database from the very beginning. But as the demands of greater scalability and greater distribution of data, all 4 components of ACID – Atomicity, Consistency, Isolation, Durability – can no longer hold true. Hence, the CAP Theorem.

CAP Theorem (aka Brewer’s Theorem) stands for Consistency, Availability and Partition Tolerance. In the ACM (Association of Computing Machinery) conference in 2000, Eric Brewer of University of California, Berkeley delivered the theorem. It states that it is impossible for a distributed computer system (or a database system) to simultaneously guarantee all 3 components – Consistency, Availability and Partition Tolerance.

Therefore, as the database systems become more and more distributed in cyberspace, the ACID theorem begins to break down. All 4 components of ACID cannot be guaranteed simultaneously anymore as the database systems begin to become more and more distributed.

So when we get back to the diagram, both the concepts on left and right – Master/Slave OR Multiple Peers – will put a tremendous strain on the single, non-distributed relational database.

New data models are surfacing to handling the very distributed data sets. Distributed object-based ¬†“file systems” and NoSQL type of databases are some of the unconventional data storage “systems” that are beginning to surface as viable alternatives to the relational database method in cyberspace. And one of them is the Amazon Dynamo Storage System. (ADSS)

ADSS is a highly available, Amazon-proprietary key-value distributed data store. ADSS has both the properties of distributed hash table and a database and it is used internally to power various Cloud Services in Amazon Web Services (AWS).


It behaves like a relational database where it stores data objects to be retrieved. However, the data objects are not stored in a table format of a conventional relational database. Instead, the data is stored in a distributed hash table and data content or value is retrieved with a key, hence a key-value data model.

The data content is stored and retrieved through a simple put¬†and get¬†interface, much like how RESTful would do it. From the article in ReadWriteWeb, here’s how Dynamo works:

  • Physical nodes are thought of as identical and organized into a ring.
  • Virtual nodes are created by the system and mapped onto physical nodes, so that hardware can be swapped for maintenance and failure.
  • The partitioning algorithm is one of the most complicated pieces of the system, it specifies which nodes will store a given object.
  • The partitioning mechanism automatically scales as nodes enter and leave the system.
  • Every object is asynchronously replicated to N nodes.
  • The updates to the system occur asynchronously and may result in multiple copies of the object in the system with slightly different states.
  • The discrepancies in the system are reconciled after a period of time, ensuring eventual consistency.
  • Any node in the system can be issued a¬†put¬†or¬†get¬†request for any key

The Dynamo architecture addresses the CAP Theorem well. It is highly available, where nodes, either physical or virtual, ¬†can be easily swapped without affected the storage services. It is also high performance, nodes (again physical or virtual) can be added to boost the performance. The high performance and highly available components addresses the “A” piece of CAP.

Its distributed nature also allows it to scale to billions and billions of data objects and hence meets the “P” requirement of CAP. The Partitioning Tolerance is definitely there.

However, as stated by CAP Theorem, you can’t have¬†all 3 happening at the same time. Therefore, the “C” or Consistency piece of CAP has to be compromised. That is why Dynamo has been labeled an “eventually consistency” storage system.

As data is stored into ADSS, the changes of the data is propogated and will be asynchronously replicated to other nodes in the system, eventually making all the data objects and its value consistent. However, given the speed of things in cyberspace and the nature of most Cloud Computing services, the consistency piece could be difficult to accomplish and that is OK because in most of the transactions that are distributed, inconsistency is acceptable.

So that’s a bit about the Amazon Dynamo. Alas, we may never get our grubby hands on this piece of cool data storage and management technology, but knowing that Dynamo is powering AWS and its business is an eye-opener for us into the realm of a new technology evolution.