Commvault calling again

[Preamble: I will be a delegate of Storage Field Day 14. My expenses, travel and accommodation are paid for by GestaltIT, the organizer and I am not obligated to blog or promote the technologies presented in this event]

I am off to the US again next Monday. I am attending Storage Field Day 14 and it will be a 20+ hour long haul flight. But this SFD has a special twist, because I will be Washington DC first for Commvault GO 2017 conference. And I can’t wait.

My first encounter with Commvault goes way back in early 2001. I recalled they had their Galaxy version but in terms of market share, they were relatively small compared to Veritas and IBM at the time. I was with NetApp back then, and customers in Malaysia hardly heard of them, except for the people in Shell IT International (SITI). For those of us in the industry, we all knew that SITI worldwide had an exclusive Commvault fork just for them.

Continue reading

The reverse wars – DAS vs NAS vs SAN

It has been quite an interesting 2 decades.

In the beginning (starting in the early to mid-90s), SAN (Storage Area Network) was the dominant architecture. DAS (Direct Attached Storage) was on the wane as the channel-like throughput of Fibre Channel protocol coupled by the million-device addressing of FC obliterated parallel SCSI, which was only able to handle 16 devices and throughput up to 80 (later on 160 and 320) MB/sec.

NAS, defined by CIFS/SMB and NFS protocols – was happily chugging along the 100 Mbit/sec network, and occasionally getting sucked into the arguments about why SAN was better than NAS. I was already heavily dipped into NFS, because I was pretty much a SunOS/Solaris bigot back then.

When I joined NetApp in Malaysia in 2000, that NAS-SAN wars were going on, waiting for me. NetApp (or Network Appliance as it was known then) was trying to grow beyond its dot-com roots, into the enterprise space and guys like EMC and HDS were frequently trying to put NetApp down.

It’s a toy”  was the most common jibe I got in regular engagements until EMC suddenly decided to attack Network Appliance directly with their EMC CLARiiON IP4700. EMC guys would fondly remember this as the “NetApp killer“. Continue reading

Why demote archived data access?

We are all familiar with the concept of data archiving. Passive data gets archived from production storage and are migrated to a slower and often, cheaper storage medium such tapes or SATA disks. Hence the terms nearline and offline data are created. With that, IT constantly reminds users that the archived data is infrequently accessed, and therefore, they have to accept the slower access to passive, archived data.

The business conditions have certainly changed, because the need for data to be 100% online is becoming more relevant. The new competitive nature of businesses dictates that data must be at the fingertips, because speed and agility are the new competitive advantage. Often the total amount of data, production and archived data, is into hundred of TBs, even into PetaBytes!

The industries I am familiar with – Oil & Gas, and Media & Entertainment – are facing this situation. These industries have a deluge of files, and unstructured data in its archive, and much of it dormant, inactive and sitting on old tapes of a bygone era. Yet, these files and unstructured data have the most potential to be explored, mined and analyzed to realize its value to the organization. In short, the archived data and files must be democratized!

The flip side is, when the archived files and unstructured data are coupled with a slow access interface or unreliable storage infrastructure, the value of archived data is downgraded because of the aggravated interaction between access and applications and business requirements. How would organizations value archived data more if the access path to the archived data is so damn hard???!!!

An interesting solution fell upon my lap some months ago, and putting A and B together (A + B), I believe the access path to archived data can be unbelievably of high performance, simple, transparent and most importantly, remove the BLOODY PAIN of FILE AND DATA MIGRATION!  For storage administrators and engineers familiar with data migration, especially if the size of the migration is into hundreds of TBs or even PBs, you know what I mean!

I have known this solution for some time now, because I have been avidly following its development after its founders left NetApp following their Spinnaker venture to start Avere Systems.

avere_220

Continue reading

Praying to the hypervisor God

I was reading a great article by Frank Denneman about storage intelligence moving up the stack. It was pretty much in line with what I have been observing in the past 18 months or so, about the storage pendulum having swung back to DAS (direct attached storage). To be more precise, the DAS form factor I am referring to are physical server hardware that houses many disk drives.

Like it or not, the hypervisor has become the center of the universe in the IT space. VMware has become the indomitable force in the hypervisor technology, with Microsoft Hyper-V playing catch-up. The seismic shift of these 2 hypervisor technologies are leading storage vendors to place them on to the altar and revering them as deities. The others, with the likes of Xen and KVM, and to lesser extent Solaris Containers aren’t really worth mentioning.

This shift, as the pendulum swings from networked storage back to internal “direct-attached” storage are dictated by 4 main technology factors:

  • The x86 server architecture
  • Software-defined
  • Scale-out architecture
  • Flash-based storage technology

Anyone remember Thumper? Not the Disney character from the Bambi movie!

thumper-bambi-cartoon-character

When the SunFire X4500 (aka Thumper) was first released in (intermission: checking Wiki for the right year) in 2006, I felt that significant wound inflicted in the networked storage industry. Instead of the usual 4-8 hard disk drives in the all the industry servers at the time, the X4500 4U chassis housed 48 hard disk drives. The design and architecture were so astounding to me, I even went and bought a 1U SunFire X4150 for my personal server collection. Such was my adoration for Sun’s technology at the time.

Continue reading

HDS HNAS kicks ass

I am dusting off the cobwebs of my blog. After almost 3 months of inactivity, (and trying to avoid the Social Guidelines Media of my present company), I have bolstered enough energy to start writing again. I am tired, and I am finishing off the previous engagements prior to joining HDS. But I am glad those are coming to an end, with the last job in Beijing next week.

So officially, I will be in HDS as of November 4, 2013 . And to get into my employer’s good books, I think I should start with something that HDS has proved many critics wrong. The notion that HDS is poor with NAS solutions has been dispelled with a recent benchmark report from SPECSfs, especially when it comes to NFS file performance. HDS has never been much of a big shouter about their HNAS, even back in the days of OEM with BlueArc. The gap period after the BlueArc acquisition was also, in my opinion, quiet unless it was the gestation period for this Kick-Ass announcement a couple of weeks ago. Here is one of the news circling in the web, from the ever trusty El-Reg.

HDS has never been big shouting like the guys, like EMC and NetApp, who have plenty of marketing dollars to spend. EMC Isilon and NetApp C-Mode have always touted their mighty SPECSfs numbers, usually with a high number of controllers or nodes behind the benchmarks. More often than not, many readers would probably focus more on the NFSops/sec figures rather than the number of heads required to generate the figures.

Unaware of this HDS announcement, I was already asking myself that question about NFSops/sec per SINGLE controller head. So, on September 26 2013, I did a table comparing some key participants of the SPECSfs2008_nfs.v3 and here is the table:

SPECSfs2008_nfs.v3-26-Sept-2013In the last columns of the 2 halves (which I have highlighted in Red), the NFSops/sec/single controller head numbers are shown. I hope that readers would view the performance numbers more objectively after reading this. Therefore, I let you make your own decisions but ultimately, they are what they are. One should not be over-mesmerized by the super million NFSops/sec until one looks under the hood. Secondly, one should also look at things more holistically such as $/NFSops/sec, $/ORT (overall response time), and $/GB/NFSops/managed and other relevant indicators of the systems sold.

But I do not want to take the thunder away from HDS’ HNAS platforms in this recent benchmark. In summary,

HDS SPECbench summaryTo reach a respectable number of 607,647 NFSops/sec with a sub-second response time is quite incredible. The ORT of 0.59 msecs should not be taken lightly because to eke just about a 0.1 msec is not easy. Therefore, reaching 0.5 millisecond is pretty awesome.

This is my first blog after 3 months. I am glad to be back and hopefully with the monkey off my back (I am referring to my outstanding engagements), I can concentrating on writing good stuff again. I know, I know … I still owe some people some entries. It’s great to be back 🙂

The openness of Novell Filr technology

In the previous blog entry, I spoke about finally getting the opportunity look deeper into Novell Filr technology. As I continue my journey of exploration, I am already consolidating information about the other EFSS (Enterprise File Synchronization and Sharing) solutions out there.

Many corporate IT users are moving away from pedantic corporate IT control toward the seemingly easy to synchronize, easy to share, cloud-based services such as Dropbox and Box.net. This practice exposes a big hole in the corporate network, leaking data and files, and yet most corporate IT users are completely ignorant about such a irresponsible act.

Corporate IT users cannot blame IT for being a big A-hole because they keep tight controls of the network and security. It is their job to safeguard the company’s data and files for security, compliance and privacy reasons.

In the past 9-12 months, IT has certainly relaxed (probably “relented” is a better word) their uptight demeanour because they know they couldn’t stop the onslaught of BYOD (bring your own devices). The C-level and the senior management have practically demanded it and had forced their way to bring in their own smart devices and tablets to increase their productivity (Yeah, right!).

To alleviate data security concerns, MDM (Mobile Device Management) solutions are now hot items on the IT shopping list. Since we are talking about Novell, I also got to know that Novell also has an MDM solution called ZenWorks Mobile Management. Novell Zenworks is already well integrated with the proven Novell track record of user and identity management as well as integration with LDAP authentication systems such as Active Directory and eDirectory.

The collision of the BYOD phenomena and the need to securely share corporate data and files security conceives the Enterprise File Synchronization and Sharing market. Continue reading

Washing too much software defined

There’s been practically a firestorm when EMC announced ViPR, its own version of “software-defined storage” at EMC World last week. Whether you want to call it Virtualization Platform Re-defined or Re-imagined, competitors such as NetApp, HDS, Nexenta have taken pot-shots at EMC, and touting their own version of software-defined storage.

In the release announcement, EMC claimed the following (a cut-&-paste from the announcement):

  • The EMC ViPR Software-Defined Storage Platform uniquely provides the ability to both manage storage infrastructure (Control Plane) and the data residing within that infrastructure (Data Plane).
  • The EMC ViPR Controller leverages existing storage infrastructures for traditional workloads, but provisions new ViPR Object Data Services (with access via Amazon S3 or HDFS APIs) for next-generation workloads. ViPR Object Data Services integrate with OpenStack via Swift and can be run against enterprise or commodity storage.
  • EMC ViPR integrates tightly with VMware’s Software Defined Data Center through industry standard APIs and interoperates with Microsoft and OpenStack.

The separation of the Control Plane and the Data Plane of the ViPR allows the abstraction of 2 main layers.

Layer 1 is the abstraction of the underlying storage hardware infrastructure. Although I don’t have the full details (EMC guys please enlighten me, please!), I believe storage administrator no longer need to carve out LUNs from RAID groups or Storage Pools, striped and sliced them and further provision them into meta file systems before they are exported or shared through NAS protocols. I am , of course, quoting the underlying provisioning architecture of Celerra, which can be quite complex. Anyone who has done manual provisioning with Celerra Manager should know what I mean.

Here’s the provisioning architecture of Celerra:

Continue reading

Is there no one to challenge EMC?

It’s been a busy, busy month for me.

And when the IDC Worldwide Quarterly Disk Storage Systems Tracker for 3Q12 came out last week, I was reading in awe how impressive EMC was at the figures that came out. But most impressive of all is how the storage market continue to grow despite very challenging and uncertain business conditions. With the Eurozone crisis, China experiencing lower economic growth numbers and the uncertainty in the US economic sectors, it is unbelievable that the storage market grew 24.4% y-o-y. And for the first time, 7,104PB was shipped! Yes folks, more than 7 exabytes was shipped during that period!

In the Top 5 external disk storage market based on revenue, only EMC and HDS recorded respectable growth, recording 8.7% and 13.8% respectively. NetApp, my “little engine that could” seems to be running out of steam, earning only 0.9% growth. The rest of the field, IBM and HP, recorded negative growth. Here’s a look at the Top 5 and the rest of the pack:

HP -11% decline is shocking to me, and given the woes after woes that HP has been experiencing, HP has not seen the bottom yet. Let’s hope that the new slew of HP storage products and technologies announced at HP Discover 2012 will lift them up. It also looked like a total rebranding of the HP storage products as well, with a big play on the word “Store”. They have names like StoreOnce, StoreServ, StoreAll, StoreVirtual, StoreEasy and perhaps more coming.

The Open SAN market, which includes iSCSI has EMC again at Number 1, with 29.8%, followed by IBM (14%), HDS (12.2%) and HP (11.8%). When combined with NAS numbers, the NAS + Open SAN market, EMC has 33.5% while NetApp is 13.7%.

Of course, it is just not about external storage because the direct-attached storage numbers count too. With that, the server vendors of IBM, HP and Dell are still placed behind EMC. Here’s a look at that table from IDC:

There’s a highlight of Dell in the table above. Dell actually grew by 4.0% compared to decline in HP and IBM, gaining 0.1%. However, their numbers seem too tepid and led to the exit of Darren Thomas, Dell’s storage group head honco. News of Darren’s exit was on TheRegister.

I also want to note that NAS growth numbers actually outpaced Open SAN numbers including iSCSI.

This leads me to say that there is a dire need for NAS technical and technology expertise in the local storage market. As the adoption of NFSv4 under way and SMB 2.0 and 3.0 coming into the picture, I urge all storage networking professionals who are more pro-SAN to step out of their comfort zone and look into NAS as well. The world is changing and it is no longer SAN vs NAS anymore. And NFSv4.1 is blurring the lines even more with the concepts of layout.

But back to the subject to storage market, is there no one out there challenging EMC in a big way? NetApp was, some years ago, recorded double digit growth and challenging EMC neck-and-neck, but that mantle seems to be taken over by HDS. But both are long way to go to get close to EMC.

Kudos to the EMC team for damn good execution!

HUS VM is not virtual storage appliance

I was very confused with an recent HDS announcement, and it has been at the back of my mind for several weeks now.

On the last week of September 2012, HDS announced their Hitachi Unified Storage VM, aimed at small/medium enterprises (SMEs). Nothing wrong with that, except the VM part. I am not sure if it was the Computerworld author’s mistake, but he specifically mentioned VM as “virtual machine”. Check out the link here and the screenshot below:

It got me a bit riled up thinking this was some kind of virtual storage ala VMware Virtual Storage Appliance or NetApp ONTAP-V or even the early innovation of HP Lefthand Virtual SAN Appliance. Apparently not!

I did some short investigation and found Nigel Poulton’s blog which gave a fantastic dissection about the HUS VM. The VM is not virtual machine, but Virtual Midrange!

The HUS VM architecture is deep in ASICs, given HDS long history in ASICs design and manufacturing. SiliconFS, is the NAS front end, while the iSCSI and FC part are being serviced from the same HDS microcode of the higher end HDS VSP. Here’s a look at the hardware architectural diagram from Nigel’s blog:

There are plenty of bells and whistles in the HUS VM, armed with plenty of 8Gbps FC ports, SAS 6Gbps backend, SSDs, and software such as Dynamic Provisioning (thin provisioning) and Dynamic Tiering.

Continue reading