Persistent Storage could stifle Google Anthos multi-cloud ambitions

To win in the multi-cloud game, you have to be in your competitors’ cloud. Google Cloud has been doing that since they announced Google Anthos just over a year ago. They have been crafting their “assault”, starting with on-premises, and Anthos on AWS. Anthos on Microsoft® Azure is coming, currently in preview mode.

Google CEO Sundar Pichai announcing Google Anthos at Next ’19

BigQuery Omni conversation starter

2 weeks ago, whilst the Google Cloud BigQuery Omni announcement was still under wraps, local Malaysian IT portal Enterprise IT News sent me the embargoed article to seek my views and opinions. I have to admit that I was ignorant about the deeper workings of BigQuery, and haven’t fully gone through the works of Google Anthos as well. So I researched them.

Having done some small works on Qubida (defunct) and Talend several years ago, I have grasped useful data analytics and data enablement concepts, and so BigQuery fitted into my understanding of BigQuery Omni quite well. That triggered my interests to write this blog and meshing the persistent storage conundrum (at least for me it is something to be untangled) to Kubernetes, to GKE (Google Kubernetes Engine), and thus Anthos as well.

For discussion sake, here is an overview of BigQuery Omni.

An overview of Google Cloud BigQuery Omni on multiple cloud providers

My comments and views are in this EITN article “Google Cloud’s BigQuery Omni for Multi-cloud Analytics”.

Continue reading

Down the rabbit hole with Kubernetes Storage

Kubernetes is on fire. Last week VMware® released the State of Kubernetes 2020 report which surveyed companies with 1,000 employees and above. Results were not surprising as the adoptions of this nascent technology are booming. But persistent storage remained the nagging concern for the Kubernetes serving the infrastructure resources to applications instances running in the containers of a pod in a cluster.

The standardization of storage resources have settled with CSI (Container Storage Interface). Storage vendors have almost, kind of, sort of agreed that the API objects such as PersistentVolumes, PersistentVolumeClaims, StorageClasses, along with the parameters would be the way to request the storage resources from the Pre-provisioned Volumes via the CSI driver plug-in. There are already more than 50 vendor specific CSI drivers in Github.

Kubernetes and CSI initiative

Kubernetes and the CSI (Container Storage Interface) logos

The CSI plug-in method is the only way for Kubernetes to scale and keep its dynamic, loadable storage resource integration with external 3rd party vendors, all clamouring to grab a piece of this burgeoning demands both in the cloud and in the enterprise.

Continue reading

Paradigm shift of Dev to Storage Ops

[ Disclosure: I was invited by GestaltIT as a delegate to their Storage Field Day 19 event from Jan 22-24, 2020 in the Silicon Valley USA. My expenses, travel, accommodation and conference fees were covered by GestaltIT, the organizer and I was not obligated to blog or promote the vendors’ technologies presented at the event. The content of this blog is of my own opinions and views ]

A funny photo (below) came up on my Facebook feed a couple of weeks back. In an honest way, it depicted how a developer would think (or the lack of thinking) about the storage infrastructure designs and models for the applications and workloads. This also reminded me of how DBAs used to diss storage engineers. “I don’t care about storage, as long as it is RAID 10“. That was aeons ago 😉

The world of developers and the world of infrastructure people are vastly different. Since cloud computing birthed, both worlds have collided and programmable infrastructure-as-code (IAC) have become part and parcel of cloud native applications. Of course, there is no denying that there is friction.

Welcome to DevOps!

The Kubernetes factor

Containerized applications are quickly defining the cloud native applications landscape. The container orchestration machinery has one dominant engine – Kubernetes.

In the world of software development and delivery, DevOps has taken a liking to containers. Containers make it easier to host and manage life-cycle of web applications inside the portable environment. It packages up application code other dependencies into building blocks to deliver consistency, efficiency, and productivity. To scale to a multi-applications, multi-cloud with th0usands and even tens of thousands of microservices in containers, the Kubernetes factor comes into play. Kubernetes handles tasks like auto-scaling, rolling deployment, computer resource, volume storage and much, much more, and it is designed to run on bare metal, in the data center, public cloud or even a hybrid cloud.

Continue reading