Open Source on my mind

Last week was cropped with topics around Open Source software. I want to voice my opinions here (with a bit of ranting) and hoping not to rouse many abhorrent comments from different parties and views. This blog is to create conversations, even controversial ones, but we must first agree that there will be disagreements. We must accept disagreements as part of this conversation.

In my 30 years career, Open Source has been a big part of my development and progress. The ideas of freely using (certain) software without any licensing implications and these software being openly available were not always welcomed, as they are now. I think the Open Source revolution has created an innovation movement that is still going strong, and it has not only permeated completely into the IT industry, Open Source has also now in almost every part of the technology-based industries as well. The Open Source influence is massive.

Open Source word cloud

In the beginning

In the beginning, in my beginning in 1992, the availability of software and its source codes was a closed one. Coming from a VAX/VMS background (I was a system admin in my mathematics department’s mini computers), Unix liberated my thinking. The final 6 months in the university was systems programming in C, and it completely changed how I wanted my career to shape. The mantra of “Free as in Freedom” in General Public License GPL (which I got know of much later) boded well with my own tenets in life.

If closed source development models led to proprietary software and a centralized way to distributing software with license, I would count the Open Source development models as one of the earliest decentralized technology frameworks. Down with the capitalistic corporations (aka Evil Empires)!

It was certainly a wonderful and generous way to make the world that it is today. It is a better world now.

Continue reading

Beyond the WORM with MinIO object storage

I find the terminology of WORM (Write Once Read Many) coming back into the IT speak in recent years. In the era of rip and burn, WORM was a natural thing where many of us “youngsters” used to copy files to a blank CD or DVD. I got know about how WORM worked when I learned that the laser in the CD burning process alters the chemical compound in a segment on the plastic disc of the CD, rendering the “burned” segment unwritable once it was written but it could be read many times.

At the enterprise level, I got to know about WORM while working with tape drives and tape libraries in the mid-90s. The objective of WORM is to save and archive the data and files in a non-rewritable format for compliance reasons. And it was the data compliance and data protection parts that got me interested into data management. WORM is a big deal in many heavily regulated industries such as finance and banking, insurance, oil and gas, transportation and more.

Obviously things have changed. WORM, while very much alive in the ageless tape industry, has another up-and-coming medium in Object Storage. The new generation of data infrastructure and data management specialists are starting to take notice.

Worm Storage – Image from Hubstor (https://www.hubstor.net/blog/write-read-many-worm-compliant-storage/)

I take this opportunity to take MinIO object storage for a spin in creating WORM buckets which can be easily architected as data compliance repositories with many applications across regulated industries. Here are some relevant steps.

Continue reading

Stating the case for a Storage Appliance approach

I was in Indonesia last week to meet with iXsystems™‘ partner PT Maha Data Solusi. I had the wonderful opportunity to meet with many people there and one interesting and often-replayed question arose. Why aren’t iX doing software-defined-storage (SDS)? It was a very obvious and deliberate question.

After all, iX is already providing the free use of the open source TrueNAS® CORE software that runs on many x86 systems as an SDS solution and yet commercially, iX sell the TrueNAS® storage appliances.

This argument between a storage appliance model and a storage storage only model has been debated for more than a decade, and it does come into my conversations on and off. I finally want to address this here, with my own views and opinions. And I want to inform that I am open to both models, because as a storage consultant, both have their pros and cons, advantages and disadvantages. Up front I gravitate to the storage appliance model, and here’s why.

My story of the storage appliance begins …

Back in the 90s, most of my work was on Fibre Channel and NFS. iSCSI has not existed yet (iSCSI was ratified in 2003). It was almost exclusively on the Sun Microsystems® enterprise storage with Sun’s software resell of the Veritas® software suite that included the Sun Volume Manager (VxVM), Veritas® Filesystem (VxFS), Veritas® Replication (VxVR) and Veritas® Cluster Server (VCS). I didn’t do much Veritas® NetBackup (NBU) although I was trained at Veritas® in Boston in July 1997 (I remembered that 2 weeks’ trip fondly). It was just over 2 months after Veritas® acquired OpenVision. Backup Plus was the NetBackup.

Between 1998-1999, I spent a lot of time working Sun NFS servers. The prevalent networking speed at that time was 100Mbits/sec. And I remember having this argument with a Sun partner engineer by the name of Wong Teck Seng. Teck Seng was an inquisitive fella (still is) and he was raving about this purpose-built NFS server he knew about and he shared his experience with me. I detracted him, brushing aside his always-on tech orgasm, and did not find great things about a NAS storage appliance. Auspex™ was big then, and I knew of them.

I joined NetApp® as Malaysia’s employee #2. It was an odd few months working with a storage appliance but after a couple of months, I started to understand and appreciate the philosophy. The storage Appliance Model made sense to me, even through these days.

Continue reading

Object Storage becoming storage lingua franca of Edge-Core-Cloud

Data Fabric was a big buzzword going back several years. I wrote a piece talking about Data Fabric, mostly NetApp®’s,  almost 7 years ago, which I titled “The Transcendence of Data Fabric“. Regardless of storage brands and technology platforms, and each has its own version and interpretations, one thing holds true. There must be a one layer of Data Singularity. But this is easier said than done.

Fast forward to present. The latest buzzword is Edge-to-Core-Cloud or Cloud-to-Core-Edge. The proliferation of Cloud Computing services, has spawned beyond to multiclouds, superclouds and of course, to Edge Computing. Data is reaching to so many premises everywhere, and like water, data has found its way.

Edge-to-Core-to-Cloud (Gratitude thanks to https://www.techtalkthai.com/dell-technologies-opens-iot-solutions-division-and-introduces-distributed-core-architecture/)

The question on my mind is can we have a single storage platform to serve the Edge-to-Core-to-Cloud paradigm? Is there a storage technology which can be the seamless singularity of data? 7+ years onwards since my Data Fabric blog, The answer is obvious. Object Storage.

The ubiquitous object storage and the S3 access protocol

For a storage technology that was initially labeled “cheap and deep”, object storage has become immensely popular with developers, cloud storage providers and is fast becoming storage repositories for data connectors. I wrote a piece called “All the Sources and Sinks going to Object Storage” over a month back, which aptly articulate how far this technology has come.

But unknown to many (Google NASD and little is found), object storage started its presence in SNIA (it was developed in Carnegie-Mellon University prior to that) in the early 90s, then known as NASD (network attached secure disk). As it is made its way into the ANSI T10 INCITS standards development, it became known as Object-based Storage Device or OSD.

The introduction of object storage services 16+ years ago by Amazon Web Services (AWS) via their Simple Storage Services (S3) further strengthened the march of object storage, solidified its status as a top tier storage platform. It was to AWS’ genius to put the REST API over HTTP/HTTPS with its game changing approach to use CRUD (create, retrieve, update, delete) operations to work with object storage. Hence the S3 protocol, which has become the de facto access protocol to object storage.

Yes, I wrote those 2 blogs 11 and 9 years ago respectively because I saw that object storage technology was a natural fit to the burgeoning new world of storage computing. It has since come true many times over.

Continue reading

Unstructured Data Observability with Datadobi StorageMAP

Let’s face it. Data is bursting through its storage seams. And every organization now is storing too much data that they don’t know they have.

By 2025, IDC predicts that 80% the world’s data will be unstructured. IDC‘s report Global Datasphere Forecast 2021-2025 will see the global data creation and replication capacity expand to 181 zettabytes, an unfathomable figure. Organizations are inundated. They struggle with data growth, with little understanding of what data they have, where the data is residing, what to do with the data, and how to manage the voluminous data deluge.

The simple knee-jerk action is to store it in cloud object storage where the price of storage is $0.0000xxx/GB/month. But many IT departments in these organizations often overlook the fact that that the data they have parked in the cloud require movement between the cloud and on-premises. I have been involved in numerous discussions where the customers realized that they moved the data in the cloud moved too frequently. Often it was an erred judgement or short term blindness (blinded by the cheap storage costs no doubt), further exacerbated by the pandemic. These oversights have resulted in expensive and painful monthly API calls and egress fees. Welcome to reality. Suddenly the cheap cloud storage doesn’t sound so cheap after all.

The same can said about storing non-active unstructured data on primary storage. Many organizations have not been disciplined to practise good data management. The primary Tier 1 storage becomes bloated over time, grinding sluggishly as the data capacity grows. I/O processing becomes painfully slow and backup takes longer and longer. Sounds familiar?

The A in ABC

I brought up the ABC mantra a few blogs ago. A is for Archive First. It is part of my data protection consulting practice conversation repertoire, and I use it often to advise IT organizations to be smart with their data management. Before archiving (some folks like to call it tiering, but I am not going down that argument today), we must know what to archive. We cannot blindly send all sorts of junk data to the secondary or tertiary storage premises. If we do that, it is akin to digging another hole to fill up the first hole.

We must know which unstructured data to move replicate or sync from the Tier 1 storage to a second (or third) less taxing storage premises. We must be able to see this data, observe its behaviour over time, and decide the best data management practice to apply to this data. Take note that I said best data management practice and not best storage location in the previous sentence. There has to be a clear distinction that a data management strategy is more prudent than to a “best” storage premises. The reason is many organizations are ignorantly thinking the best storage location (the thought of the “cheapest” always seems to creep up) is a good strategy while ignoring the fact that data is like water. It moves from premises to premises, from on-prem to cloud, cloud to other cloud. Data mobility is a variable in data management.

Continue reading

All the Sources and Sinks going to Object Storage

The vocabulary of sources and sinks are beginning to appear in the world of data storage as we witness the new addition of data processing frameworks and the applications in this space. I wrote about this in my blog “Rethinking data. processing frameworks systems in real time” a few months ago, introducing my take on this budding new set of I/O characteristics and data ecosystem. I also started learning about the Kappa Architecture (and Lambda as well), a framework designed to craft and develop a set of amalgamated technologies to handle stream processing of a series of data in relation to time.

In Computer Science, sources and sinks are considered external entities that often serve as connectors of input and output of disparate systems. They are often not in the purview of data storage architects. Also often, these sources and sinks are viewed as black boxes, and their inner workings are hidden from the views of the data storage architects.

Diagram from https://developer.here.com/documentation/get-started/dev_guide/shared_content/topics/olp/concepts/pipelines.html

The changing facade of data stream processing presents the constant motion of data, the continuous data being altered as it passes through the many integrated sources and sinks. We are also see much of the data processed in-memory as much as possible. Thus, the data services from a traditional storage model of SAN and NAS may straggle with the requirements demanded by this new generation of data stream processing.

As the world of traditional data storage processing is expanding into data streams processing and vice versa, and the chatter of sources and sinks can no longer be ignored.

Continue reading

Celebrating MinIO

Essentially MinIO is a web server …

I vaguely recalled Anand Babu Periasamy (AB as he is known), the CEO of MinIO saying that when I first met him in 2017. I was fresh “playing around” with MinIO and instantly I fell in love with software technology. Wait a minute. Object storage wasn’t supposed to be so easy. It was not supposed to be that simple to set up and use, but MinIO burst into my storage universe like the birth of the Infinity Stones. There was a eureka moment. And I was attending one of the Storage Field Days in the US shortly after my MinIO discovery in late 2017. What an opportunity!

I could not recall how I made the appointment to meeting MinIO, but I recalled myself taking an Uber to their cosy office on University Avenue in Palo Alto to meet. Through Andy Watson (one of the CTOs then), I was introduced to AB, Garima Kapoor, MinIO’s COO and his wife, Frank Wessels, Zamin (one of the business people who is no longer there) and Ugur Tigli (East Coast CTO) who was on the Polycom. I was awe struck.

Last week, MinIO scored a major Series B round funding of USD103 million. It was delayed by the pandemic because I recalled Garima telling me that the funding was happening in 2020. But I think the delay made it better, because the world now is even more ready for MinIO than ever before.

Continue reading

A conceptual distributed enterprise HCI with open source software

Cloud computing has changed everything, at least at the infrastructure level. Kubernetes is changing everything as well, at the application level. Enterprises are attracted by tenets of cloud computing and thus, cloud adoption has escalated. But it does not have to be a zero-sum game. Hybrid computing can give enterprises a balanced choice, and they can take advantage of the best of both worlds.

Open Source has changed everything too because organizations now has a choice to balance their costs and expenditures with top enterprise-grade software. The challenge is what can organizations do to put these pieces together using open source software? Integration of open source infrastructure software and applications can be complex and costly.

The next version of HCI

Hyperconverged Infrastructure (HCI) also changed the game. Integration of compute, network and storage became easier, more seamless and less costly when HCI entered the market. Wrapped with a single control plane, the HCI management component can orchestrate VM (virtual machine) resources without much friction. That was HCI 1.0.

But HCI 1.0 was challenged, because several key components of its architecture were based on DAS (direct attached) storage. Scaling storage from a capacity point of view was limited by storage components attached to the HCI architecture. Some storage vendors decided to be creative and created dHCI (disaggregated HCI). If you break down the components one by one, in my opinion, dHCI is just a SAN (storage area network) to HCI. Maybe this should be HCI 1.5.

A new version of an HCI architecture is swimming in as Angelfish

Kubernetes came into the HCI picture in recent years. Without the weights and dependencies of VMs and DAS at the HCI server layer, lightweight containers orchestrated, mostly by, Kubernetes, made distribution of compute easier. From on-premises to cloud and in between, compute resources can easily spun up or down anywhere.

Continue reading

OpenZFS with Object Storage

At AWS re:Invent last week, Amazon Web Services announced Amazon FSx for OpenZFS. This is the 4th managed service under the Amazon FSx umbrella, joining NetApp® ONTAP™, Lustre and Windows File Server. The highly scalable OpenZFS filesystem can provide high throughput and IOPS bandwidth to Amazon EC2, ECS, EKS and VMware® Cloud on AWS.

I am assuming the AWS OpenZFS uses EBS as the block storage backend, given the announcement that it can deliver 4GB/sec of throughput and 160,000 IOPS from the “drives” without caching. How the OpenZFS is provisioned to the AWS clients is well documented in this blog here. It is an absolutely joy (for me) to see the open source OpenZFS filesystem getting the validation and recognization from AWS. This is one hell of a filesystem.

But this blog isn’t about AWS FSx for OpenZFS with block storage. It is about what is coming, and eventually AWS FSx for OpenZFS could expand into AWS’s proficient S3 storage as well.  Can OpenZFS integrate with an S3 object storage backend? This blog looks into the burning question.

In the recently concluded OpenZFS Developer Summit 2021, one of the topics was “ZFS on Object Storage“, and the short answer is a resounding YES!

OpenZFS Developer Summit 2021

Continue reading

Open Source Storage Technology Crafters

The conversation often starts with a challenge. “What’s so great about open source storage technology?

For the casual end users of storage systems, regardless of SAN (definitely not Fibre Channel) or NAS on-premises, or getting “files” from the personal cloud storage like Dropbox, OneDrive et al., there is a strong presumption that open source storage technology is cheap and flaky. This is not helped with the diet of consumer brands of NAS in the market, where the price is cheap, but the storage offering with capabilities, reliability and performance are found to be wanting. Thus this notion floats its way to the business and enterprise users, and often ended up with a negative perception of open source storage technology.

Highway Signpost with Open Source wording

Storage Assemblers

Anybody can “build” a storage system with open source storage software. Put the software together with any commodity x86 server, and it can function with the basic storage services. Most open source storage software can do the job pretty well. However, once the completed storage technology is put together, can it do the job well enough to serve a business critical end user? I have plenty of sob stories from end users I have spoken to in these many years in the industry related to so-called “enterprise” storage vendors. I wrote a few blogs in the past that related to these sad situations:

We have such storage offerings rigged with cybersecurity risks and holes too. In a recent Unit 42 report, 250,000 NAS devices are vulnerable and exposed to the public Internet. The brands in question are mentioned in the report.

I would categorize these as storage assemblers.

Continue reading