What happened to NDMP?

The acronym NDMP shows up once in a while in NAS (Network Attached Storage) upgrade tenders. And for the less informed, NDMP (Network Data Management Protocol) was one of the early NAS data management (more like data mover specifications) initiatives to backup NAS devices, especially the NAS appliances that run proprietary operating systems code.

NDMP Logo

Backup software vendors often have agents developed specifically for an operating system or an operating environment. But back in the mid-1990s, 2000s, the internal file structures of these proprietary vendors were less exposed, making it harder for backup vendors to develop agents for them. Furthermore, there was a need to simplify the data movements of NAS files between backup servers and the NAS as a client, to the media servers and eventually to the tape or disk targets. The dominant network at the time ran at 100Mbits/sec.

To overcome this, Network Appliance® and PDC Solutions/Legato® developed the NDMP protocol, allowing proprietary NAS devices to run a standardized client-server architecture with the NDMP server daemon in the NAS and the backup service running as an NDMP client. Here is a simplified look at the NDMP architecture.

NDMP Client-Server Architecture

Continue reading

Open Source Storage Technology Crafters

The conversation often starts with a challenge. “What’s so great about open source storage technology?

For the casual end users of storage systems, regardless of SAN (definitely not Fibre Channel) or NAS on-premises, or getting “files” from the personal cloud storage like Dropbox, OneDrive et al., there is a strong presumption that open source storage technology is cheap and flaky. This is not helped with the diet of consumer brands of NAS in the market, where the price is cheap, but the storage offering with capabilities, reliability and performance are found to be wanting. Thus this notion floats its way to the business and enterprise users, and often ended up with a negative perception of open source storage technology.

Highway Signpost with Open Source wording

Storage Assemblers

Anybody can “build” a storage system with open source storage software. Put the software together with any commodity x86 server, and it can function with the basic storage services. Most open source storage software can do the job pretty well. However, once the completed storage technology is put together, can it do the job well enough to serve a business critical end user? I have plenty of sob stories from end users I have spoken to in these many years in the industry related to so-called “enterprise” storage vendors. I wrote a few blogs in the past that related to these sad situations:

We have such storage offerings rigged with cybersecurity risks and holes too. In a recent Unit 42 report, 250,000 NAS devices are vulnerable and exposed to the public Internet. The brands in question are mentioned in the report.

I would categorize these as storage assemblers.

Continue reading

The future of Fibre Channel in the Cloud Era

The world has pretty much settled that hybrid cloud is the way to go for IT infrastructure services today. Straddled between the enterprise data center and the infrastructure-as-a-service in public cloud offerings, hybrid clouds define the storage ecosystems and architecture of choice.

A recent Blocks & Files article, “Broadcom server-storage connectivity sales down but recovery coming” caught my attention. One segment mentioned that the server-storage connectivity sales was down 9% leading me to think “Is this a blip or is it a signal that Fibre Channel, the venerable SAN (storage area network) protocol is on the wane?

Fibre Channel Sign

Thus, I am pondering the position of Fibre Channel SANs in the cloud era. Where does it stand now and in the near future? Continue reading

Is Software Defined right for Storage?

George Herbert Leigh Mallory, mountaineer extraordinaire, was once asked “Why did you want to climb Mount Everest?“, in which he replied “Because it’s there“. That retort demonstrated the indomitable human spirit and probably exemplified best the relationship between the human being’s desire to conquer the physical limits of nature. The software of humanity versus the hardware of the planet Earth.

Juxtaposing, similarities can be said between software and hardware in computer systems, in storage technology per se. In it, there are a few schools of thoughts when it comes to delivering storage services with the notable ones being the storage appliance model and the software-defined storage model.

There are arguments, of course. Some are genuinely partisan but many a times, these arguments come in the form of the flavour of the moment. I have experienced in my past companies touting the storage appliance model very strongly in the beginning, and only to be switching to a “software company” chorus years after that. That was what I meant about the “flavour of the moment”.

Software Defined Storage

Continue reading

Layers in Storage – For better or worse

Storage arrays and storage services are built upon by layers and layers beneath its architecture. The physical components of hard disk drives and solid states are abstracted into RAID volumes, virtualized into other storage constructs before they are exposed as shares/exports, LUNs or objects to the network.

Everyone in the storage networking industry, is cognizant of the layers and it is the foundation of knowledge and experience. The public cloud storage services side is the same, albeit more opaque. Nevertheless, both have layers.

In the early 2000s, SNIA® Technical Council outlined a blueprint of the SNIA® Shared Storage Model, a framework describing layers and properties of a storage system and its services. It was similar to the OSI 7-layer model for networking. The framework helped many industry professionals and practitioners shaped their understanding and the development of knowledge in their respective fields. The layering scheme of the SNIA® Shared Storage Model is shown below:

SNIA Shared Storage Model – The layering scheme

Storage vendors layering scheme

While SNIA® storage layers were generic and open, each storage vendor had their own proprietary implementation of storage layers. Some of these architectures are simple, but some, I find a bit too complex and convoluted.

Here is an example of the layers of the Automated Volume Management (AVM) architecture of the EMC® Celerra®.

EMC Celerra AVM Layering Scheme

I would often scratch my head about AVM. Disks were grouped into RAID groups, which are LUNs (Logical Unit Numbers). Then they were defined as Celerra® dvols (disk volumes), and stripes of the dvols were consolidated into a storage pool.

From the pool, a piece of a storage capacity construct, called a slice volume, were combined with other slice volumes into a metavolume which eventually was presented as a file system to the network and their respective NAS clients. Explaining this took an effort because I was the IP Storage product manager for EMC® between 2007 – 2009. It was a far cry from the simplicity of NetApp® ONTAP 7 architecture of RAID groups and volumes, and the WAFL® (Write Anywhere File Layout) filesystem.

Another complicated layered framework I often gripe about is Ceph. Here is a look of how the layers of CephFS is constructed.

Ceph Storage Layered Framework

I work with the OpenZFS filesystem a lot. It is something I am rather familiar with, and the layered structure of the ZFS filesystem is essentially simpler.

Storage architecture mixology

Engineers are bizarre when they get too creative. They have a can do attitude that transcends the boundaries of practicality sometimes, and boggles many minds. This is what happens when they have their own mixology ideas.

Recently I spoke to two magnanimous persons who had the idea of providing Ceph iSCSI LUNs to the ZFS filesystem in order to use the simplicity of NAS file sharing capabilities in TrueNAS® CORE. From their own words, Ceph NAS capabilities sucked. I had to draw their whole idea out in a Powerpoint and this is the architecture I got from the conversation.

There are 3 different storage subsystems here just to provide NAS. As if Ceph layers aren’t complicated enough, the iSCSI LUNs from Ceph are presented as Cinder volumes to the KVM hypervisor (or VMware® ESXi) through the Cinder driver. Cinder is the persistent storage volume subsystem of the Openstack® project. The Cinder volumes/hypervisor datastore are virtualized as vdisks to the respective VMs installed with TrueNAS® CORE and OpenZFS filesystem. From the TrueNAS® CORE, shares and exports are provisioned via the SMB and NFS protocols to Windows and Linux respectively.

It works! As I was told, it worked!

A.P.P.A.R.M.S.C. considerations

Continuing from the layered framework described above for NAS, other aspects beside the technical work have to be considered, even when it can work technically.

I often use a set of diligent data storage focal points when considering a good storage design and implementation. This is the A.P.P.A.R.M.S.C. Take for instance Protection as one of the points and snapshot is the technology to use.

Snapshots can be executed at the ZFS level on the TrueNAS® CORE subsystem. Snapshots can be trigged at the volume level in Openstack® subsystem and likewise, rbd snapshots at the Ceph subsystem. The question is, which snapshot at which storage subsystem is the most valuable to the operations and business? Do you run all 3 snapshots? How do you execute them in succession in a scheduled policy?

In terms of performance, can it truly maximize its potential? Can it churn out the best IOPS, and deliver at wire speed? What is the latency we can expect with so many layers from 3 different storage subsystems?

And supporting this said architecture would be a nightmare. Where do you even start the troubleshooting?

Those are just a few considerations and questions to think about when such a layered storage architecture along. IMHO, such a design was over-engineered. I was tempted to say “Just because you can, doesn’t mean you should

Elegance in Simplicity

Einstein (I think) quoted:

Einstein’s quote on simplicity and complexity

I am not saying that having too many layers is wrong. Having a heavily layered architecture works for many storage solutions out there, where they are often masked with a simple and intuitive UI. But in yours truly point of view, as a storage architecture enthusiast and connoisseur, there is beauty and elegance in simple designs.

The purpose here is to promote better understanding of the storage layers, and how they integrate and interact with each other to deliver the data services to the network. In the end, that is how most storage architectures are built.

 

Storageless shan’t be thy name

Storageless??? What kind of a tech jargon is that???

This latest jargon irked me. Storage vendor NetApp® (through its acquisition of Spot) and Hammerspace, a metadata-driven storage agnostic orchestration technology company, have begun touting the “storageless” tech jargon in hope that it will become an industry buzzword. Once again, the hype cycle jargon junkies are hard at work.

Clear, empty storage containers

Clear, nondescript storage containers

It is obvious that the storageless jargon wants to ride on the hype of serverless computing, an abstraction method of computing resources where the allocation and the consumption of resources are defined by pieces of programmatic code of the running application. The “calling” of the underlying resources are based on the application’s code, and thus, rendering the computing resources invisible, insignificant and not sexy.

My stand

Among the 3 main infrastructure technology – compute, network, storage, storage technology is a bit of a science and a bit of dark magic. It is complex and that is what makes storage technology so beautiful. The constant innovation and technology advancement continue to make storage as a data services platform relentlessly interesting.

Cloud, Kubernetes and many data-as-a-service platforms require strong persistent storage. As defined by NIST Definition of Cloud Computing, the 4 of the 5 tenets – on-demand self-service, resource pooling, rapid elasticity, measured servicedemand storage to be abstracted. Therefore, I am all for abstraction of storage resources from the data services platform.

But the storageless jargon is doing a great disservice. It is not helping. It does not lend its weight glorifying the innovations of storage. In fact, IMHO, it felt like a weighted anchor sinking storage into the deepest depth, invisible, insignificant and not sexy. I am here dutifully to promote and evangelize storage innovations, and I am duly unimpressed with such a jargon.

Continue reading

A Paean to NFS

It is certainly encouraging to see both NAS protocols, NFS and SMB, featured well in the latest VMware® vSAN 7 Update 1 release. The NFS v3 and v4.1 support was already in vSAN 7.0 when it was earlier announced as part of its Native File Services for vSAN. But some years ago, NFS was not always the primary storage protocol of choice. SAN protocols, Fibre Channel and iSCSI, were almost always designated to serve enterprise applications. At the client side, Windows became prominent, and the SMB/CIFS protocol dominated the landscape of the desktop. This further pushed NFS into the back closet.

NFS or Network File System has its naysayers. The venerable, but often maligned distributed network file protocol is 36 years today. In storage vendors such as NetApp®, VAST Data, Pure Storage FlashBlade, and Dell EMC Isilon, NFS is still positioned as the primary file protocol for manufacturing testers on the shop floor, EDA/eCAD applications, seismic and subsurface applications in Oil & Gas and many more. In another development, just like its presence in the vSAN Native Services,, NFS has also quietly embedded itself into many storage platforms to serve the data platform services within the respective framework itself.

And I have experienced NFS from the client side to the enterprise applications and more, and I take this opportunity to pay tribute.

NFS (Network File System) client server network

NFS (Network File System) client server network

Continue reading

Intel is still a formidable force

It is easy to kick someone who is down. Bad news have stronger ripple effects than the good ones. Intel® is going through a rough patch, and perhaps the worst one so far. They delayed their 7nm manufacturing process, one which could have given Intel® the breathing room in the CPU war with rival AMD. And this delay has been pushed back to 2021, possibly 2022.

Intel Apple Collaboration and Partnership started in 2005

Their association with Apple® is coming to an end after 15 years, and more security flaws surfaced after the Spectre and Meltdown debacle. Extremetech probably said it best (or worst) last month:

If we look deeper (and I am sure you have), all these negative news were related to their processors. Intel® is much, much more than that.

Their Optane™ storage prowess

I have years of association with the folks at Intel® here in Malaysia dating back 20 years. And I hardly see Intel® beating it own drums when it comes to storage technologies but they are beginning to. The Optane™ revolution in storage, has been a game changer. Optane™ enables the implementation of persistent memory or storage class memory, a performance tier that sits between DRAM and the SSD. The speed and more notable the latency of Optane™ are several times faster than the Enterprise SSDs.

Intel pyramid of tiers of storage medium

If you want to know more about Optane™’s latency and speed, here is a very geeky article from Intel®:

The list of storage vendors who have embedded Intel® Optane™ into their gears is long. Vast Data, StorOne™, NetApp® MAX Data, Pure Storage® DirectMemory Modules, HPE 3PAR and Nimble Storage, Dell Technologies PowerMax, PowerScale, PowerScale and many more, cement Intel® storage prowess with Optane™.

3D Xpoint, the Phase Change Memory technology behind Optane™ was from the joint venture between Intel® and Micron®. That partnership was dissolved in 2019, but it has not diminished the momentum of next generation Optane™. Alder Stream and Barlow Pass are going to be Gen-2 SSD and Persistent Memory DC DIMM respectively. A screenshot of the Optane™ roadmap appeared in Blocks & Files last week.

Intel next generation Optane roadmap

Continue reading

The Falcon to soar again

One of the historical feats which had me mesmerized for a long time was the 14-year journey China’s imperial treasures took to escape the Japanese invasion in the early 1930s, sandwiched between rebellions and civil wars in China. More than 20,000 pieces of the imperial treasures took a perilous journey to the west and back again. Divided into 3 routes over a decade and four years, not a single piece of treasure was broken or lost. All in the name of preservation.

Today, that 20,000 over pieces live in perpetuity in 2 palaces – Beijing Palace Museum in China and National Palace Museum Taipei in Taiwan

Digital data preservation

Digital data preservation is on another end of the data lifecycle spectrum. More often than not, it is not the part that many pay attention to. In the past 2 decades, digital data has grown so much that it is now paramount to keep the data forever. Mind you, this is not the data hoarding kind but to preserve the knowledge and wisdom which is in the digital content of the data.

[ Note: If you are interested to know more about Data -> Information -> Knowledge -> Wisdom, check out my 2015 article on LinkedIn ]

SNIA (Storage Networking Industry Association) conducted 2 surveys – one in 2007 and another in 2017 – called the 100 Year Archive, and found that the requirement for preserving digital data has grown multiple folds over the 10 years. In the end, the final goal is to ensure that the perpetual digital contents are

  • Accessible
  • Undamaged
  • Usable

All at an affordable cost. Therefore, SNIA has the vision that the digital content must transcend beyond the storage medium, the storage system and the technology that holds it.

The Falcon reemerges

A few weeks ago, I had the privilege to speak with Falconstor® Software‘s David Morris (VP of Global Product Strategy & Marketing) and Mark Delsman (CTO). It was my first engagement with Falconstor® in almost 9 years! I wrote a piece of Falconstor® in my blog in 2011.

Continue reading