Crash consistent data recovery for ZFS volumes

While TrueNAS® CORE and TrueNAS® Enterprise are more well known for its NAS (network attached storage) prowess, many organizations are also confidently placing their enterprise applications such as hypervisors and databases on TrueNAS® via SANs (storage area networks) as well. Both iSCSI and Fibre Channel™ (selected TrueNAS® Enterprise storage models) protocols are supported well.

To reliably protect these block-based applications via the SAN protocols, ZFS snapshot is the key technology that can be dependent upon to restore the enterprise applications quickly. However, there are still some confusions when it comes to the state of recovery from the ZFS snapshots. On that matter, this situations are not unique to the ZFS environments because as with many other storage technologies, the confusion often stem from the (mis)understanding of the consistency state of the data in the backups and in the snapshots.

Crash Consistency vs Application Consistency

To dispel this misunderstanding, we must first begin with the understanding of a generic filesystem agnostic snapshot. It is a point-in-time copy, just like a data copy on the tape or in the disks or in the cloud backup. It is a complete image of the data and the state of the data at the storage layer at the time the storage snapshot was taken. This means that the data and metadata in this snapshot copy/version has a consistent state at that point in time. This state is frozen for this particular snapshot version, and therefore it is often labeled as “crash consistent“.

In the event of a subsystem (application, compute, storage, rack, site, etc) failure or a power loss, data recovery can be initiated using the last known “crash consistent” state, i.e. restoring from the last good backup or snapshot copy. Depending on applications, operating systems, hypervisors, filesystems and the subsystems (journals, transaction logs, protocol resiliency primitives etc) that are aligned with them, some workloads will just continue from where it stopped. It may already have some recovery mechanisms or these workloads can accept data loss without data corruption and inconsistencies.

Some applications, especially databases, are more sensitive to data and state consistencies. That is because of how these applications are designed. Take for instance, the Oracle® database. When an Oracle® database instance is online, there is an SGA (system global area) which handles all the running mechanics of the database. SGA exists in the memory of the compute along with transaction logs, tablespaces, and open files that represent the Oracle® database instance. From time to time, often measured in seconds, the state of the Oracle® instance and the data it is processing have to be synched to non-volatile, persistent storage. This commit is important to ensure the integrity of the data at all times.

Continue reading

The hot cold times of HCI

Hyperconverged Infrastructure (HCI) is a hot technology. It has been for the past decade since Nutanix™ took the first mover advantage from the Converged Infrastructure (CI) technology segment and made it pretty much its ownfor a while.

Hyper Converged Infrastructure

But the HCI market (not the technology) is a strange one. It is hot. It is cold. The perennial leader, Nutanix™, has yet to eke out a profitable year. VMware® is strong in the market. Cisco™, which was hot with their HyperFlex solution in 2019, was also stopped short with a dismal decline in the IDC Worldwide HCI 2Q2020 tracker below:

IDC Worldwide Hyperconverged Infrastructure Tracker – 2Q2020

dHCI = Disaggregated or discombobulated? 

dHCI is known as disaggregated HCI. The disaggregation part is disaggregated hardware, especially on the storage part. Vendors like HPE® with Nimble Storage, Hitachi Vantara, NetApp® and a few more have touted the disaggregation of the performance and capacity, the separation of storage and compute as a value proposition but through close inspection, it is just another marketing ploy to attach a SAN storage to servers. It was marketing old wine in a new bottle. As rightly pointed out by my friend, Charles Chow of Commvault® quoted in his blog

Continue reading

Houston, we have an OpenStack problem

I have always wanted to look deeper into OpenStack, but I never got around to it. However, last week, something about NASA and OpenStack caught my attention … something about NASA pulling out of OpenStack development.

The spin was that “OpenStack has come on its own” is true, because OpenStack today has 180 (at last count on June 20th 2012) companies participating and contributing to the development, deployment and marketing of the highly popular Infrastructure-as-a-Service cloud computing project. So, the NASA withdrawal was not as badly felt as to what NASA had said next.

When NASA CIO Linda Cureton announced that NASA has shifted to Amazon Web Services (AWS) for their enterprise cloud-based infrastructure and they have saved almost a million dollars in costs, that was a clear and blatant impalement to the very heart and soul of OpenStack. NASA, one of the 2 founders of OpenStack in 2009, has switched sides to announce their preference to OpenStack’s rival, AWS. It pains me to just listen to the such a defection. Continue reading