Cloud silos after eliminating silos

I love cloud computing. I love the economics and the agility of the cloud and how it changed IT forever. The cloud has solved some of the headaches of IT, notably the silos in operations, the silos in development and the silos in infrastructure.

The virtualization and abstraction of rigid infrastructures and on-premise operations have given birth to X-as-a-Service and Cloud Services. Along with this, comes cloud orchestration, cloud automation, policies, DevOps and plenty more. IT responds well to this and thus, public clouds services like Amazon Web Services, Microsoft Azure, and Google Cloud Platforms are dominating the landscape. Other cloud vendors like Rackspace, SoftLayer, Alibaba Cloud are following the leaders pack offering public, private, hybrid and specialized services as well.

In this pile, we can now see the certain “camps” emerging. Many love Azure Stack and many adore AWS Lambda. Google just had their summit here in Malaysia yesterday, appealing to a green field and looking for new adopters. What we are seeing is we have customers and end users adopting various public cloud services providers, their services, their ecosystem, their tools, their libraries and so on. We also know that many customers and end users having several applications on AWS, and some on Azure and perhaps looking for better deals with another cloud vendor. Multi-cloud is becoming flavour of the season, and that word keeps appearing in presentations and conversations.

Yes, multi-cloud is a good thing. Customers and end users would love it because they can get the most bang for their buck, if only … it wasn’t so complicated. There aren’t many “multi-cloud” platforms out there yet. Continue reading

Don’t get too drunk on Hyper Converged

I hate the fact that I am bursting the big bubble brewing about Hyper Convergence (HC). I urge all to look past the hot air and hype frenzy that are going on, because in the end, the HC platforms have to be aligned and congruent to the organization’s data architecture and business plans.

The announcement of Gartner’s latest Magic Quadrant on Integrated Systems (read hyper convergence) has put Nutanix as the leader of the pack as of August 2015. Clearly, many of us get caught up because it is the “greatest feeling in the world”. However, this faux feeling is not reality because there are many factors that made the pack leaders in the Magic Quadrant (MQ).

Gartner MQ Integrated Systems Aug 2015

First of all, the MQ is about market perception. There is no doubt that the pack leaders in the Leaders Quadrant have earned their right to be there. Each company’s revenue, market share, gross margin, company’s profitability have helped put each as leaders in the pack. However, it is also measured by branding, marketing, market perception and acceptance and other intangible factors.

Secondly, VMware EVO: Rail has split the market when EMC has 3 HC solutions in VCE, ScaleIO and EVO: Rail. Cisco wanted to do their own HC piece in Whiptail (between the 2014 MQ and 2015 MQ reports), and closed down Whiptail when their new CEO came on board. NetApp chose EVO: Rail and also has the ever popular FlexPod. That is why you see that in this latest MQ report, NetApp and Cisco are interpreted independently whereas in last year’s report, it was Cisco/NetApp. Market forces changed, and perception changed.  Continue reading

Praying to the hypervisor God

I was reading a great article by Frank Denneman about storage intelligence moving up the stack. It was pretty much in line with what I have been observing in the past 18 months or so, about the storage pendulum having swung back to DAS (direct attached storage). To be more precise, the DAS form factor I am referring to are physical server hardware that houses many disk drives.

Like it or not, the hypervisor has become the center of the universe in the IT space. VMware has become the indomitable force in the hypervisor technology, with Microsoft Hyper-V playing catch-up. The seismic shift of these 2 hypervisor technologies are leading storage vendors to place them on to the altar and revering them as deities. The others, with the likes of Xen and KVM, and to lesser extent Solaris Containers aren’t really worth mentioning.

This shift, as the pendulum swings from networked storage back to internal “direct-attached” storage are dictated by 4 main technology factors:

  • The x86 server architecture
  • Software-defined
  • Scale-out architecture
  • Flash-based storage technology

Anyone remember Thumper? Not the Disney character from the Bambi movie!

thumper-bambi-cartoon-character

When the SunFire X4500 (aka Thumper) was first released in (intermission: checking Wiki for the right year) in 2006, I felt that significant wound inflicted in the networked storage industry. Instead of the usual 4-8 hard disk drives in the all the industry servers at the time, the X4500 4U chassis housed 48 hard disk drives. The design and architecture were so astounding to me, I even went and bought a 1U SunFire X4150 for my personal server collection. Such was my adoration for Sun’s technology at the time.

Continue reading

Supercharging Ethernet … with a PAUSE

It’s been a while since I wrote. I had just finished a 2-week stint in Melbourne, conducting 2 Data ONTAP classes and had a blast.

But after almost 3 1/2 months of doing little except teaching NetApp classes, the stint is ending. I wanted it that way, to take a break and also to take on a new challenge. I will be taking on a job with Hitachi Data Systems, going back to the industry that I have termed the “Wild, wild west”. After a 4 1/2-year hiatus, I think that industry still behaves the way it is .. brash, exclusive, rich! The oligarchy of the oilmen are still laughing their way to the banks. And it will be my job to sell storage (and cloud) solutions to them.

In my Netapp (and EMC) engagements in the past 6 months, I have seen the greater adoption of iSCSI over Fibre Channel, and many has predicted that 10Gigabit Ethernet will be the infliction point where iSCSI can finally stand shoulder-to-shoulder with Fibre Channel. After all, 10 Gigabit/sec is definitely faster than 8 Gigabit/sec Fibre Channel, right? WRONG! (I am perfectly aware there is a 16 Gigabit/sec Fibre Channel, but can’t you see I am trying to start an argument here?)

Delivering SCSI data load over iSCSI on 10 Gigabit/sec Ethernet does not necessarily mean that it would be faster than delivering the same payload over 8 Gigabit/sec Fibre Channel. This statement can be viewed in many different ways and hence the favourite IT reply would be … “It depends“.

I would leave this performance argument for another day but today we are going to talk about some of the key additions to supercharge 10 Gigabit Ethernet for data delivery in storage networking capacity. In addition, 10 Gigabit Ethernet is the primary transport for Fibre Channel over Ethernet (FCoE) and it is absolutely critical that 10 Gigabit Ethernet must be close to as reliable as Fibre Channel for data delivery in a storage network.

Ethernet is a non-deterministic protocol, and therefore, its delivery result is dependent on many factors. Likewise 10 Gigabit Ethernet has inherited part of that feature. The delivery of data over Ethernet can be lossy, i.e. packets can get lost and the upper layer application protocols will have to respond to detecte the dropped packets and to ensure lost packets are redelivered to complete the consignment. But delivering data in a storage network cannot be lossy and in most cases of SANs, the requirement is to have the data arrive in the sequence they were delivered. The SAN fabric (especially with the common services of Layer 3 of the FC protocol stack) and the deterministic nature of Fibre Channel protocol were the reasons many has relied on Fibre Channel SAN technology for more than a decade. How can 10 Gigabit Ethernet respond?

Continue reading

The beginning of the end of FCoE

Never bet against Ethernet!

I am sure many IT experts and practitioners would agree. In the past 30 years or so, Ethernet has fought and won against many so-called would be “Ethernet killers”. The one that stood out for me was ATM (Asynchronous Transfer Mode) because in my past job, I implemented NFS over ATM, running in LANE (LAN Emulation) mode in a NetApp filer setup in Sarawak Shell.

That was more than 10 years ago. And 10 years ago, ATM was hot technology. It was touted as the next generation network technology and supposed to unify the voice, data and network together. ATM also had better framing and QOS (Quality-of-Service) control and offers several modes of traffic shaping and policies. And today, ATM is reduced to a niche telecommunication protocol, and do not participate much in the LAN technology space.

That was the networking space. The storage networking space is dominated by Fibre Channel for almost 15 years. Fibre Channel is a serial technology that replaced the channel-based technology of SCSI in the enterprise. And Fibre Channel has also grown leaps and bounds, dominating the SAN (Storage Area Network) landscape with speeds up to 16Gbit/sec today.

When the networking world and storage networking world collided (I mean combined) with Fibre Channel over Ethernet (FCoE) technology some years back, one has got to give some time soon. Yup, FCoE was really hot 2 years ago, but where is it today? Is Cisco still singing about FCoE like it used to? What about the other storage vendors that used to have at least 1 FCoE slide in their product presentation?

Welcome to the world of IT hypes! FCoE benefits? Ability to carry LAN and SAN traffic with one piece of wire. 10 Gigabit-style, baby!

Continue reading

Houston, we have an OpenStack problem

I have always wanted to look deeper into OpenStack, but I never got around to it. However, last week, something about NASA and OpenStack caught my attention … something about NASA pulling out of OpenStack development.

The spin was that “OpenStack has come on its own” is true, because OpenStack today has 180 (at last count on June 20th 2012) companies participating and contributing to the development, deployment and marketing of the highly popular Infrastructure-as-a-Service cloud computing project. So, the NASA withdrawal was not as badly felt as to what NASA had said next.

When NASA CIO Linda Cureton announced that NASA has shifted to Amazon Web Services (AWS) for their enterprise cloud-based infrastructure and they have saved almost a million dollars in costs, that was a clear and blatant impalement to the very heart and soul of OpenStack. NASA, one of the 2 founders of OpenStack in 2009, has switched sides to announce their preference to OpenStack’s rival, AWS. It pains me to just listen to the such a defection. Continue reading