Disaggregation and Composability vital for AI/DL models to scale

New generations of applications and workloads like AI/DL (Artificial Intelligence/Deep Learning), and HPC (High Performance Computing) are breaking the seams of entrenched storage infrastructure models and frameworks. We cannot continue to scale-up or scale-out the storage infrastructure to meet these inundating fluctuating I/O demands. It is time to look at another storage architecture type of infrastructure technology – Composable Infrastructure Architecture.

Infrastructure is changing. The previous staid infrastructure architecture parts of compute, network and storage have long been thrown of the window, precipitated by the rise of x86 server virtualization almost 20 years now. It triggered a tsunami of virtualizing everything, including storage virtualization, which eventually found a more current nomenclature – Software Defined Storage. Both storage virtualization and software defined storage (SDS) are similar and yet different and should be revered through different contexts and similar goals. This Tech Target article laid out both nicely.

As virtualization raged on, converged infrastructure (CI) which evolved into hyperconverged infrastructure (HCI) went fever pitch for a while. Companies like Maxta, Pivot3, Atlantis, are pretty much gone, with HPE® Simplivity and Cisco® Hyperflex occasionally blipped in my radar. In a market that matured very fast, HCI is now dominated by Nutanix™ and VMware®, with smaller Microsoft®, Dell EMC® following them.

From HCI, the attention of virtualization has shifted something more granular, more scalable in containerization. Despite a degree of complexity, containerization is taking agility and scalability to the next level. Kubernetes, Dockers are now mainstay nomenclature of infrastructure engineers and DevOps. So what is driving composable infrastructure? Have we reached the end of virtualization? Not really.

Evolution of infrastructure. Source: IDC

It is just that one part of the infrastructure landscape is changing. This new generation of AI/ML workloads are flipping the coin to the other side of virtualization. As we see the diagram above, IDC brought this mindset change to get us to Think Composability, the next phase of Infrastructure.

Continue reading

Scaling new HPC with Composable Architecture

[Disclosure: I was invited by Dell Technologies as a delegate to their Dell Technologies World 2019 Conference from Apr 29-May 1, 2019 in the Las Vegas USA. Tech Field Day Extra was an included activity as part of the Dell Technologies World. My expenses, travel, accommodation and conference fees were covered by Dell Technologies, the organizer and I was not obligated to blog or promote their technologies presented at this event. The content of this blog is of my own opinions and views]

Deep Learning, Neural Networks, Machine Learning and subsequently Artificial Intelligence (AI) are the new generation of applications and workloads to the commercial HPC systems. Different from the traditional, more scientific and engineering HPC workloads, I have written about the new dawn of supercomputing and the attractive posture of commercial HPC.

Don’t be idle

From the business perspective, the investment of HPC systems is high most of the time, and justifying it to the executives and the investors is not easy. Therefore, it is critical to keep feeding the HPC systems and significantly minimize the idle times for compute, GPUs, network and storage.

However, almost all HPC systems today are inflexible. Once assigned to a project, the resources pretty much stay with the project, even when the workload processing of the project is idle and waiting. Of course, we have to bear in mind that not all resources are fully abstracted, virtualized and software-defined whereby you can carve out pieces of the hardware and deliver a percentage of that resource. Case in point is the CPU, where you cannot assign certain clock cycles of CPU to one project and another half to the other. The technology isn’t there yet. Certain resources like GPU is going down the path of Virtual GPU, and into the realm of resource disaggregation. Eventually, all resources of the HPC systems – CPU, memory, FPGA, GPU, PCIe channels, NVMe paths, IOPS, bandwidth, burst buffers etc – should be disaggregated and pooled for disparate applications and workloads based on demands of usage, time and performance.

Hence we are beginning to see the disaggregated HPC systems resources composed and built up the meet the diverse mix and needs of HPC applications and workloads. This is even more acute when a AI project might grow cold, but the training of AL/ML/DL workloads continues to stay hot

Liqid the early leader in Composable Architecture

Continue reading

The full force of Western Digital

[Preamble: I have been invited by GestaltIT as a delegate to their Tech Field Day for Storage Field Day 18 from Feb 27-Mar 1, 2019 in the Silicon Valley USA. My expenses, travel and accommodation were covered by GestaltIT, the organizer and I was not obligated to blog or promote their technologies presented at this event. The content of this blog is of my own opinions and views]

3 weeks after Storage Field Day 18, I was still trying to wrap my head around the 3-hour session we had with Western Digital. I was like a kid in a candy store for a while, because there were too much to chew and I couldn’t munch them all.

From “Silicon to System”

Not many storage companies in the world can claim that mantra – “From Silicon to Systems“. Western Digital is probably one of 3 companies (the other 2 being Intel and nVidia) I know of at present, which develops vertical innovation and integration, end to end, from components, to platforms and to systems.

For a long time, we have always known Western Digital to be a hard disk company. It owns HGST, SanDisk, providing the drives, the Flash and the Compact Flash for both the consumer and the enterprise markets. However, in recent years, through 2 eyebrow raising acquisitions, Western Digital was moving itself up the infrastructure stack. In 2015, it acquired Amplidata. 2 years later, it acquired Tegile Systems. At that time, I was wondering why a hard disk manufacturer was buying storage technology companies that were not its usual bread and butter business.

Continue reading

The Network is Still the Computer

[Preamble: I have been invited by  GestaltIT as a delegate to their TechFieldDay from Oct 17-19, 2018 in the Silicon Valley USA. My expenses, travel and accommodation are covered by GestaltIT, the organizer and I was not obligated to blog or promote their technologies presented at this event. The content of this blog is of my own opinions and views]

Sun Microsystems coined the phrase “The Network is the Computer“. It became one of the most powerful ideologies in the computing world, but over the years, many technology companies have tried to emulate and practise the mantra, but fell short.

I have never heard of Drivescale. It wasn’t in my radar until the legendary NFS guru, Brian Pawlowski joined them in April this year. Beepy, as he is known, was CTO of NetApp and later at Pure Storage, and held many technology leadership roles, including leading the development of NFSv3 and v4.

Prior to Tech Field Day 17, I was given some “homework”. Stephen Foskett, Chief Cat Herder (as he is known) of Tech Field Days and Storage Field Days, highly recommended Drivescale and asked the delegates to pick up some notes on their technology. Going through a couple of the videos, Drivescale’s message and philosophy resonated well with me. Perhaps it was their Sun Microsystems DNA? Many of the Drivescale team members were from Sun, and I was previously from Sun as well. I was drinking Sun’s Kool Aid by the bucket loads even before I graduated in 1991, and so what Drivescale preached made a lot of sense to me.Drivescale is all about Scale-Out Architecture at the webscale level, to address the massive scale of data processing. To understand deeper, we must think about “Data Locality” and “Data Mobility“. I frequently use these 2 “points of discussion” in my consulting practice in architecting and designing data center infrastructure. The gist of data locality is simple – the closer the data is to the processing, the cheaper/lightweight/efficient it gets. Moving data – the data mobility part – is expensive.

Continue reading