Is Pure Play Storage good?

I post storage and cloud related articles to my unofficial SNIA Malaysia Facebook community (you are welcomed to join) every day. It is a community I started over 9 years ago, and there are active live banters of the posts of the day. Casual, personal were the original reasons why I started the community on Facebook rather than on LinkedIn, and I have been curating it religiously for the longest time.

The Big 5 of Storage (it was Big 6 before this)

Looking back 8-9 years ago, the storage vendor landscape of today has not changed much. The Big 5 hegemony is still there, still dominating the Gartner Magic Quadrant for Enterprise and Mid-end Arrays, and is still there in the All-Flash quadrant as well, albeit the presence of Pure Storage in that market.

The Big 5 of today – Dell EMC, NetApp, HPE, IBM and Hitachi Vantara – were the Big 6 of 2009-2010, consisting of EMC, NetApp, Dell, HP, IBM and Hitachi Data Systems. The All-Flash, or Gartner calls it Solid State Arrays (SSA) market was still an afterthought, and Pure Storage was just founded. Pure Storage did not appear in my radar until 2 years later when I blogged about Pure Storage’s presence in the market.

Here’s a look at the Gartner Magic Quadrant for 2010:

We see Pure Play Storage vendors in the likes of EMC, NetApp, Hitachi Data Systems (before they adopted the UCP into their foray), 3PAR, Compellent, Pillar Data Systems, BlueArc, Xiotech, Nexsan, DDN and Infortrend. And when we compare that to the 2017 Magic Quadrant (I have not seen the 2018 one yet) below:

Continue reading

Xtreme future?

EMC acquisition of XtremIO sent shockwaves across the industry. The news of the acquisition, reported costing EMC USD$430 million can be found here, here and here.

The news of EMC’s would be acquisition a few weeks ago was an open secret and rumour has it that NetApp was eyeing XtremIO as well. Looks like EMC has beaten NetApp to it yet again.

The interesting part was of course, the price. USD$430 million is a very high price to pay for a stealthy, 2-year old company which has 2 rounds of funding totaling USD$25 million. Why such a large amount?

XtremIO has a talented team of engineers; the notable ones being Yaron Segev and Shahar Frank. They have their background in InfiniBand, and Shahar Frank was the chief architect of Exanet scale-out NAS (which was acquired by Dell). However, as quoted by 451Group, XtremeIO is building an all-flash SAN array that “provides consistently high performance, high levels of flash endurance, and advanced functionality around thin provisioning, de-dupe and space-efficient snapshots“.

Furthermore, XtremeIO has developed a real-time inline deduplication engine that does not degrade performance. It does this by spreading the write I/Os over the entire array. There is little information about this deduplication engine, but I bet XtremIO has developed a real-time, inherent deduplication file system that spreads all the I/Os to balance the wear-leveling as well as having scaling performance. I bet XtremIO will dedupe everything that it stores, has a B+ tree, copy-on-write file system with a super-duper efficient hashing algorithm for address mapping (pointers) with this deduplication file system. Ok, ok, I am getting carried away here, because it is likely that I will be wrong, but I can imagine, can’t I? Continue reading

Kaminario who?

The name “Kaminario” intrigues me and I don’t know the meaning of it. But there is a nice roll off the tongue until you say it a few times, fast and your tongue get twisted in a jiffy.

Kaminario is one of the few prominent startups in the all-flash storage space, getting USD$15 million Series C funding from big gun VCs of Sequoia and Globespan Capital Partners in 2011. That brought their total to USD$34 million, and also bringing them the attention of storage market.

I am beginning my research into their technology and their product line, the K2 and see why are they special. I am looking for an angle that differentiates them and how they position themselves in the market and why they deserved Series C funding.

Kaminario was founded in 2008, with their headquarters in Boston Massachusetts. They have a strong R&D facility in Israel and looking at their management lineup, they are headed by several personalities with an Israel background.

All this shouldn’t be a problem to many except the fact that Malaysia don’t recognize Israel diplomatically and some companies here, especially the government, might have an issue with the Israeli link. But then again, we have a lot of hypocrites in Malaysian politics and I am not going to there in my blog. It’s a waste of my time.

The key technology is Kaminario’s K2 SPEAR Architecture and it defines a fundamental method to store and retrieve performance-sensitive data. Yes, since this is an all-Flash storage solution, performance numbers, speeds and feeds are the “weapons” to influence prospects with high performance requirements. Kaminario touts their storage solution scales up to 1.5 million IOPS and 16GB/sec throughput and indeed they are fantastic numbers when you compare them with the conventional HDDs based storage platforms. But nowadays, if you are in the all-Flash game, everyone else is touting similar performance numbers as well. So, it is no biggie.

The secret sauce to the Kaminario technology is of course, its architecture – SPEAR. SPEAR stands for Scale-out Performance Storage Architecture. While Kaminario states that their hardware is pretty much off-the-shelf, open industry standard, somehow under the covers, the SPEAR architecture could have incorporate some special, proprietary design in its hardware to maximize the SPEAR technology. Hence, I believe there is a reason why Kaminario chose a blade-based system in the enclosures of its rack. Here’s a look at their hardware offering:

The idea using blades is a good idea because blades offers integrated wiring, consolidation, simple plug-and-play, ease-of-support, N+1 availability and so on. But this will also can put Kaminario in a position of all-blades or nothing. This is something some customers in Malaysia might have to get used to because many would prefer their racks. I could be wrong and let’s hope I am.

Each enclosure houses 16 blades, with N+1 availability. As I am going through Kaminario’s architecture, the word availability is becoming louder, and this could be something Kaminario is differentiating from the rest. Yes, Kaminario has the performance numbers, but Kaminario is also has a high-available (are we talking 6 nines?) architecture inherent within SPEAR. Of course, I have not done enough to compare Kaminario with the rest yet, but right now, availability isn’t something that most all-Flash startups trumpet loudly. I could be wrong but the message will become clearer when I go through my list of all-Flash – SolidFire, PureStorage, Virident, Violin Memory and Texas Memory Systems.

Each of the blades can be either an ioDirector or a DataNode, and they are interconnected internally with 1/10 Gigabit ports, with at least one blade acting as a standby blade to the rest in a logical group of production blades. The 10Gigabit connection are used for “data passing” between the blades for purpose of load-balancing as well as spreading out the availability function for the data. The Gigabit connection is used for management reasons.

In addition to that there is also a Fibre Channel piece that is fronting the K2 to the hosts in the SAN. Yes, this is an FC-SAN storage solution but since there was no mention of iSCSI, the IP-SAN capability is likely not there (yet).

 Here’s a look at the Kaminario SPEAR architecture:

The 2 key components are the ioDirector and the DataNode. A blade can either have a dedicated personality (either ioDirector or DataNode) or it can share both personalities in one blade. Minimum configuration is 2-blades of 2 ioDirectors for redundancy reasons.

The ioDirector is the front-facing piece. It presents to the SAN the K2 block-based LUNs and has the intelligence to dynamically load balance both Reads and Writes and also optimizing its resource utilization. The DataNode plays the role of fetching, storing, and backup and is pretty much the back-end worker.

With this description, there are 2 layers in the SPEAR architecture. And interestingly, while I mentioned that Kaminario is an all-Flash storage player, it actually has HDDs as well. The HDDs do not participate in the primary data serving and serve as containers for backup for the primary data in the SSDs, which can be MLC-Flash or DRAMs. The back-end backup layer comprising of HDDs is what I said earlier about availability. Kaminario is adding data availability as part of its differentiating features.

That’s the hardware layout of SPEAR, but the more important piece is its software, the SPEAR OS. It has 3 patent-pending  capabilities, with not so cool names (which are trademarked).

  1. Automated Data Distribution
  2. Intelligent Parallel I/O Processing
  3. Self Healing Data Availability

The Automated Data Distribution of the SPEAR OS acts as a balancer. It balances the data by dynamically and randomly (in an random equilibrium fashion, I think) to spread out the data over the storage capacity for efficiency, SSD longevity and of course, optimized performance balancing.

The second capability is Intelligent Parallel I/O Processing. The K2 architecture is essentially a storage grid. The internal 10Gigabit interconnects basically ties all nodes (ioDirectors and DataNodes) together in a grid-like fashion for the best possible intra-node communications. The parallelization of the I/O Read and Write requests spreads across the nodes in the storage grid, giving the best average response and service times.

Last but not least is the Self Healing Data Availability, a capability to dynamically reconfigure accessibility to the data in the event of node failure(s). Kaminario claims no single point of failure, which is something I am very interested to know if given a chance to assess the storage a bit deeper. So far, that’s the information I am able to get to.

The Kaminario K2 product line comes in 3 model – D, F, and H.

D is for DRAM only and F is for Flash MLC only. The H model is a combination of both Flash and DRAM SSDs. Here how Kaminario addresses each of the 3 models:


Kaminario is one of the early all-Flash storage systems that has gained recognition in 2011. They have been named a finalist in both Storage Magazine and SearchStorage Storage Product of the Year competitions for 2011. This not only endorses a brand new market for solid state storage systems but validates an entirely new category in the storage networking arena.

Kaminario can be one to watch in 2012 as with others that I plan to review in the coming weeks. The battle for Flash racks is coming!

BTW, Dell is a reseller of Kaminario.