Unstructured Data Observability with Datadobi StorageMAP

Let’s face it. Data is bursting through its storage seams. And every organization now is storing too much data that they don’t know they have.

By 2025, IDC predicts that 80% the world’s data will be unstructured. IDC‘s report Global Datasphere Forecast 2021-2025 will see the global data creation and replication capacity expand to 181 zettabytes, an unfathomable figure. Organizations are inundated. They struggle with data growth, with little understanding of what data they have, where the data is residing, what to do with the data, and how to manage the voluminous data deluge.

The simple knee-jerk action is to store it in cloud object storage where the price of storage is $0.0000xxx/GB/month. But many IT departments in these organizations often overlook the fact that that the data they have parked in the cloud require movement between the cloud and on-premises. I have been involved in numerous discussions where the customers realized that they moved the data in the cloud moved too frequently. Often it was an erred judgement or short term blindness (blinded by the cheap storage costs no doubt), further exacerbated by the pandemic. These oversights have resulted in expensive and painful monthly API calls and egress fees. Welcome to reality. Suddenly the cheap cloud storage doesn’t sound so cheap after all.

The same can said about storing non-active unstructured data on primary storage. Many organizations have not been disciplined to practise good data management. The primary Tier 1 storage becomes bloated over time, grinding sluggishly as the data capacity grows. I/O processing becomes painfully slow and backup takes longer and longer. Sounds familiar?

The A in ABC

I brought up the ABC mantra a few blogs ago. A is for Archive First. It is part of my data protection consulting practice conversation repertoire, and I use it often to advise IT organizations to be smart with their data management. Before archiving (some folks like to call it tiering, but I am not going down that argument today), we must know what to archive. We cannot blindly send all sorts of junk data to the secondary or tertiary storage premises. If we do that, it is akin to digging another hole to fill up the first hole.

We must know which unstructured data to move replicate or sync from the Tier 1 storage to a second (or third) less taxing storage premises. We must be able to see this data, observe its behaviour over time, and decide the best data management practice to apply to this data. Take note that I said best data management practice and not best storage location in the previous sentence. There has to be a clear distinction that a data management strategy is more prudent than to a “best” storage premises. The reason is many organizations are ignorantly thinking the best storage location (the thought of the “cheapest” always seems to creep up) is a good strategy while ignoring the fact that data is like water. It moves from premises to premises, from on-prem to cloud, cloud to other cloud. Data mobility is a variable in data management.

Continue reading

How well do you know your data and the storage platform that processes the data

Last week was consumed by many conversations on this topic. I was quite jaded, really. Unfortunately many still take a very simplistic view of all the storage technology, or should I say over-marketing of the storage technology. So much so that the end users make incredible assumptions of the benefits of a storage array or software defined storage platform or even cloud storage. And too often caveats of turning on a feature and tuning a configuration to the max are discarded or neglected. Regards for good storage and data management best practices? What’s that?

I share some of my thoughts handling conversations like these and try to set the right expectations rather than overhype a feature or a function in the data storage services.

Complex data networks and the storage services that serve it

I/O Characteristics

Applications and workloads (A&W) read and write from the data storage services platforms. These could be local DAS (direct access storage), network storage arrays in SAN and NAS, and now objects, or from cloud storage services. Regardless of structured or unstructured data, different A&Ws have different behavioural I/O patterns in accessing data from storage. Therefore storage has to be configured at best to match these patterns, so that it can perform optimally for these A&Ws. Without going into deep details, here are a few to think about:

  • Random and Sequential patterns
  • Block sizes of these A&Ws ranging from typically 4K to 1024K.
  • Causal effects of synchronous and asynchronous I/Os to and from the storage

Continue reading

Storage Elephant Compute Birds

Data movement is expensive. Not just costs, but also latency and resources as well. Thus there were many narratives to move compute closer to where the data is stored because moving compute is definitely more economical than moving data. I borrowed the analogy of the 2 animals from some old NetApp® slides which depicted storage as the elephant, and compute as birds. It was the perfect analogy, because the storage is heavy and compute is light.

“Close up of a white Great Egret perching on top of an African Elephant aa Amboseli national park, Kenya”

Before the animals representation came about I used to use the term “Data locality, Data Mobility“, because of past work on storage technology in the Oil & Gas subsurface data management pipeline.

Take stock of your data movement

I had recent conversations with an end user who has been paying a lot of dollars keeping their “backup” and “archive” in AWS Glacier. The S3 storage is cheap enough to hold several petabytes of data for years, because the IT folks said that the data in AWS Glacier are for “backup” and “archive”. I put both words in quotes because they were termed as “backup” and “archive” because of their enterprise practice. However, the face of their business is changing. They are in manufacturing, oil and gas downstream, and the definitions of “backup” and “archive” data has changed.

For one, there is a strong demand for reusing the past data for various reasons and these datasets have to be recalled from their cloud storage. Secondly, their data movement activities still mimicked what they did in the past during their enterprise storage days. It was a classic lift-and-shift when they moved to the cloud, and not taking stock of  their data movements and the operations they ran on these datasets. Still ongoing, their monthly AWS cost a bomb.

Continue reading

The transcendence of Data Fabric

The Register wrote a damning piece about NetApp a few days ago. I felt it was irresponsible because this is akin to kicking a man when he’s down. It is easy to do that. The writer is clearly missing the forest for the trees. He was targeting NetApp’s Clustered Data ONTAP (cDOT) and missing the entire philosophy of NetApp’s mission and vision in Data Fabric.

I have always been a strong believer that you must treat Data like water. Just like what Jeff Goldblum famously quoted in Jurassic Park, “Life finds a way“, data as it moves through its lifecycle, will find its way into the cloud and back.

And every storage vendor today has a cloud story to tell. It is exciting to listen to everyone sharing their cloud story. Cloud makes sense when it addresses different workloads such as the sharing of folders across multiple devices, backup and archiving data to the cloud, tiering to the cloud, and the different cloud service models of IaaS, PaaS, SaaS and XaaS.

Continue reading