Technology prowess of Riverbed SteelFusion

The Riverbed SteelFusion (aka Granite) impressed me the moment it was introduced to me 2 years ago. I remembered that genius light bulb moment well, in December 2012 to be exact, and it had left its mark on me. Like I said last week in my previous blog, the SteelFusion technology is unique in the industry so far and has differentiated itself from its WAN optimization competitors.

To further understand the ability of Riverbed SteelFusion, a deeper inspection of the technology is essential. I am fortunate to be given the opportunity to learn more about SteelFusion’s technology and here I am, sharing what I have learned.

What does the technology of SteelFusion do?

Riverbed SteelFusion takes SAN volumes from supported storage vendors in the central datacenter and projects the storage volumes (aka LUNs)to applications and hosts at the remote branches. The technology requires a paired relationship between SteelFusion Core (in the centralized datacenter) and SteelFusion Edge (at the branch). Both SteelFusion Core and Edge are fronted respectively by the Riverbed SteelHead WAN optimization device, to deliver the performance required.

The diagram below gives an overview of how the entire SteelFusion network architecture is like:

Riverbed SteelFusion Overall Solution 2 Continue reading

Convergence data strategy should not forget the branches

The word “CONVERGENCE” is boiling over as the IT industry goes gaga over darlings like Simplivity and Nutanix, and the hyper-convergence market. Yet, if we take a step back and remove our emotional attachment from the frenzy, we realize that the application and implementation of hyper-convergence technologies forgot one crucial elementThe other people and the other offices!

ROBOs (remote offices branch offices) are part of the organization, and often they are given the shorter end of the straw. ROBOs are like the family’s black sheeps. You know they are there but there is little mention of them most of the time.

Of course, through the decades, there are efforts to consolidate the organization’s circle to include ROBOs but somehow, technology was lacking. FTP used to be a popular but crude technology that binds the branch offices and the headquarter’s operations and data services. FTP is still used today, in countries where network bandwidth costs a premium. Data cloud services are beginning to appear of part of the organization’s outreaching strategy to include ROBOs but the fear of security weaknesses, data breaches and misuses is always there. Often, concerns of the weaknesses of the cloud overcome whatever bold strategies concocted and designed.

For those organizations in between, WAN acceleration/optimization techonolgy is another option. Companies like Riverbed, Silverpeak, F5 and Ipanema have addressed the ROBOs data strategy market well several years ago, but the demand for greater data consolidation and centralization, tighter and more effective data management and data control to meet the data compliance and data governance requirements, has grown much more sophisticated and advanced. Continue reading

Has Object Storage become the everything store?

I picked up a copy of latest Brad Stone’s book, “The Everything Store: Jeff Bezos and the Age of Amazon at the airport on my way to Beijing last Saturday. I have been reading it my whole time I have been in Beijing, reading in awe about the turbulent ups and downs of Amazon.com.

The Everything Store cover

In its own serendipitous ways, Object-based Storage Devices (OSDs) have been floating in my universe in the past few weeks. Seems like OSDs have been getting a lot of coverage lately and suddenly, while in the shower, I just had an epiphany!

Are storage vendors now positioning Object-based Storage Devices (OSDs) as Everything Store?

Continue reading

Novell Filr Technology Overview – Part 2

Part 1 of the Novell Filr Technology Overview was too heavy and I had to break up to share the feature of storage.

How will storage space look like to the different access methods or mobile device? Novell Filr does not deviate from the comfortable interface that is functionally similar to applications such as Dropbox. Under the guise of folders and files, the interface is a familiar one. It is called “MY FILES”.

But under the wraps of “MY FILES”, Novell Filr consolidates both Personal Storage and Net Folders locations under one roof. Here’s a look at “MY FILES” and how it consolidates various underlying file storage structure:

Continue reading

Novell Filr Technology Overview Part 1

I am like a kid opening presents on Christmas mornings today.

Reading and understanding the Novell Filr architecture is exciting with each feature revealing something different, some that may not be entirely unique, but something done simplified. Novell Filr has simplified a few things that are much more appreciated from storage guys like me. Let me share with you this technology learning session.

2 Key Features

First of all, I see the Novell Filr as a Secure Access Broker.

The Novell Filr provides file access, file sharing and file synchronization with multiple mobile devices. The mobility revolution in the likes of smart phones, tablets and other “connected” devices in our personal lives are changing our habits in the way we want information to be accessed, which I can summarize in 2 words – SIMPLE, UNINHIBITED. It is the lack of inhibition that scares the hell out of IT because IT is losing control, and corporations fear data leaks.

Novell Filr lets users access their home directories and network folders from their mobile devices. It lets the users synchronize their files with Windows and MacOS computers, regardless if these devices are internal of the company’s firewalled networks or external of it. Here’s a simple diagram of how Novell Filr defines its position as a Secure Access Broker.

Continue reading

Storage Facebook likes

There is a mini revolution going on, and Facebook is the main force driving it.

It is the Open Compute Project (OCP), and its mission is to redesign the modern-day data centers and drive open hardware and architectural designs and specifications, including storage. The overall goals are to drive greater data center efficiency, flexibility, energy savings and cost effectiveness in a new class of “hyperscale” datacenters. Facebook, Google and Amazon are some of the examples of hyperscale datacenters, where their businesses relies on massive computing power, exponential storage performance and racks and racks of computing infrastructure to drive their web-computing or cloud-computing services.

Some of the cool technology innovations in mind includes having systems that support any CPUs from any vendors including Intel and AMD. We may even see both processor brands running on the same motherboard. The Open Common Slots component for processors is based on PCIe. Intel has pledged their Decathlete motherboard specifications for OCP and likewise AMD has produced its Roadrunner mobo series specification for the project as well. The ARM processor could also be supported in the near future in this “mix-and-match” OCP ideals.

Other proposed changes include OpenRack specifications, “sleds”, and of course, the Open Vault project for storage (aka “Knox”). Continue reading

Can VSA help NetApp?

Almost a year ago, I had an interview with VMware Malaysia for a Senior SE position. They wanted a pre-sales guy who knows Oil & Gas and a strong technology background. I had a strong storage background, and I was involved in Oil & Gas upstream since my NetApp and EMC days.

I thought I was their guy having being led to believe (mostly by my own self-belief) to be so. I didn’t get the job but I did not find out the reason why I lost the opportunity. But I remembered well that I brashly mentioned to the Australian interviewer over the phone that VMware could become the next “storage technology” company. At that time, VMware just launched their VMware 5.0 and along with it, their vSphere Storage Appliance (VSA). This was a turning point of the virtual storage appliance space.

My friend, whose company is a VMware partner, said that the list price for the vSphere VSA was USD5,000.00 a pop. The price wasn’t too bad to the small-medium-enterprise businesses in Malaysia, minus the hardware and storage capacity cost. But what intrigued me back then was this virtual storage appliance concept was disruptive.

VMware could potentially take large JBOD farms, each for the minimum of 3 physical ESXi nodes and build a shared storage using the vSphere Storage Appliance (VSA). Who needs shared iSCSI or Fibre Channel LUNs anymore if VMware had its way?

But VMware still pretty much depended on their storage partners, especially its master, EMC and so I believe VMware held back pushing VSA for the reason of allowing its storage partner ecosystem to thrive. And for that reason, the vSphere Storage API such as VAAI and VASA were developed since vSphere 4 to enhance the deeper integration of these storage vendor’s technology into the VMware world.

But of course, long before the VMware’s VSA venture, HP LeftHand already had one on the cards. The LeftHand Virtual SAN Appliance (also VSA) was already getting rave comments from their partners and customers, impressed with how they were able to showcase HP LeftHand storage solution and technology brilliantly. Eventually, HP recognized the prowess of the LeftHand VSA and started marketing it as HP StoreVirtual VSA. I don’t hear much about the HP LeftHand (since has been renamed as P4000) VSA nowadays, seeing the HP guys in Malaysia preferring to pitch the physical storage than the virtual storage software.

NetApp, back in Q1 of 2012, also decided to go down the path of virtual storage appliance, announcing the ONTAP-v to the world here. It was initially resold through the Fujitsu partnership, but the Q1 announcement expands the ONTAP-v to a larger set of server vendors as shown below. The key component is to have a qualified RAID controller in each of the server vendors.

Continue reading

The marriage in the cloud

Admit it! You are a terabyte junkie! I am sure many of us have one terabyte or more of your personal “stuff” at home. Heck, I even heard from a friend that he has almost 20TB of high definition movies (thank you Torrent!) at home! That’s crazy!

And what the typical Malaysian consumer would do after he or she runs out of hard disk space? In KL (our beloved capital city, Kuala Lumpur), they would throng the Low Yat IT mall or extensions of it, like Digital Mall in PJ Section 14. In other towns and cities in Malaysia, PC fairs are popular, as consumers try to get the best price possible (We Malaysian are good at squeezing the max of a deal)

It is difficult for the not-so-IT-literate consumer to differentiate which brand is the best. Buffalo, Iomega, DLink, Western Digital, etc, etc. But the tides are changing, because these vendors want to tie you down for the rest of your digital life. You see, buying a small NAS for the home now comes with a big carrot, an incentive to keep you wanting for more, and yet you can’t unbind yourself from the tether once you are hooked.

Cloud storage hasn’t taken off in a big way last year. But many cloud storage vendors know there are plenty of opportunities out there but how do they get the consumers to upload their files, photos and whatever stuff they might have, to cloud storage? Ingeniously, they work together with other smaller NAS storage players and use these vendor’s product offerings as baits. They bundle a significantly large FREE capacity or data protection offering in the Cloud Storage as the carrot, and once the consumer decides to put their files in the cloud storage, boom, they are ensnared to become a long term ATM machine to the Cloud Storage Provider.

Sneaky? No? I call this good, smart marketing. You have a market of opportunities out there, but cloud storage isn’t catching on. You have small NAS vendors that is reaching out to the market of consumer, but it’s a brutal, competitive arena and margins are razor thin. It’s a win-win situation for both sides.

And this trend is catching on. When I first read about Drobo (a high-end consumer NAS storage) partnering Carbonite (a remote backup vendor now repackaged as a Cloud storage backup provider), I thought it was a pretty darn good idea. It was a marriage that happened in the cloud. Late last year, another consumer NAS company, QNAP paired up with Symform, a cloud storage and backup vendor.

This was moving towards a market that scratches the itch. The consumers wanted reliable backup too, but consumer-grade disk drives fail ever so often. Laptops get stolen, and files could be infected by viruses. The list goes on, but the point is that the Cloud Storage Providers may have found a silver lining in getting the consumers to leap into the cloud. And the whole idea of small NAS vendor-big Cloud Backup dynamic duo, just got a big endorsement last night. Guess who has decided to dip its grubby hands into the pie?

EMC, the 800-pound gorilla of the information and storage world, through its Iomega subsidiary, wants your money! They had just married Iomega with EMC Atmos. It was quoted:

“EMC subsidiary and data protection specialist Iomega announced the integration between Iomega network storage solutions and EMC Atmos, extending Atmos cloud-based data protection and sharing to Iomega’s network storage product offerings. The new integration gives small and midsize businesses (SMBs), remote offices and distributed enterprises access to any Atmos powered cloud around the world.”

Surprised? Not really, but I guess EMC needs to breath new life into Atmos and this marriage just extended Atmos’ life support system.

We raid vRAID

I took a bit of time off to read through Violin’s vRAID technology because I realized that vRAID (other than Violin’s vXM architecture) is the other most important technology that differentiates Violin Memory from the other upstarts. I blogged at a high-level about Violin a few entries ago, and we are continuing Violin impressive entrance with a storage technology that have been around for almost 25 years – RAID. Incidentally, I found this picture of the original RAID paper (see below):

Has RAID evolved with solid state storage? Evidently, no, because I have not read of any vendors (so far) touting any RAID revolution in their solid state offerings. There has been a lot of negative talks about RAID, but RAID has been the cornerstone and the foundation of storage ever since the beginning. But with the onslaughts of very large capacity HDDs, the demands of packing more bits-per-inch and the insatiable needs for reliability, RAID is slowly beginning to show its age. Cracks in the armour, I would say. And there are many newer, slightly more refined versions of RAID, from the Network RAID-style of HP P4000 or the Dell EqualLogic, to the RAID-X of IBM XIV, to innovations of declustered RAID in Panasas. (Interestingly, one of the early founders of the actual RAID concept paper, Garth Gibson, is the founder of Panasas).

And the new vRAID from Violin-System doesn’t sway much from the good ol’ RAID, but it has been adapted to address the issues of Solid State Devices.

Solid State devices (notably NAND Flash since everyone is using them) are very different from the usual spinning disks of HDDs. They behave differently and pairing solid state devices with the present implementations of RAID could be like mixing oil and water. I am not saying that the present RAID cannot work with solid state devices, but has RAID adapted to the idiosyncrasies of Flash?

It is like putting an old crank shaft into a new car. It might work for a while, but in the long run, it could damage the car. Similarly, conventional RAID might have detrimental performance and availability impact with solid state devices. And we have hardly seen storage vendors coming up to say that their RAID technology has been adapted to the solid state devices that they are selling. This silence could likely mean that they are just adapting to market requirements and not changing their RAID codes very much to take advantage of Flash or other solid state storage for that matter. Violin Memory has boldly come forward to meet that requirement and vRAID is their answer.

Violin argues that there are bottlenecks at the external RAID controller or software RAID level as well as use of legacy disk drive interfaces. And this is indeed true, because this very common RAID implementation squeezes performance at the expense of the other components such as CPU cycles.

Furthermore, there are plenty of idiosyncrasies in Flash with things such as erase-first, then write mechanism. The nature of NAND Flash, unlike DRAM, requires a block to be erased first before a write to the block is allowed. It does not “modify” per se, where the operations of read-modify-write is often applied in parity-based RAIDs of 5 and 6. Because of this nature, it is more like read-erase-write, and when the erase of the block is occurring, the read operation is stalled. That is why most SSDs will have impressive read latency (in microseconds), but very poor writes (in milliseconds). Furthermore, the parity-based RAID’s write penalty, can further aggravate the situation when the typical RAID technology is applied to NAND Flash solid state storage.

As the blocks in the NAND Flash build up, the accumulation of read-erase-write will not only reduce the lifespan of the blocks in the NAND Flash, it will also reduce the IOPS to a state we called Normalized Steady State. I wrote about this in my blog, “Not all SSDs are the same” some moons ago. In my blog, SNIA Solid State Storage Performance Testing Suite (SSS-PTS), there were 3 distinct phases of a typical NAND Flash SSD:

  • Fresh of out the Box (FOB)
  • Transition
  • Steady State
This performance degradation is part of what vendors call “Write Cliff”, where there is a sudden drop in IOPS performance as the NAND Flash SSD ages. Here’s a graph that shows the performance drop.
Violin’s vRAID, implemented within its switched vXM architecture itself, and using proprietary high performance flash controllers and the flash-optimized vRAID technology, is able deliver sustained IOPS throughout the lifespan of the flash SSD, as shown below:
To understand vRAID we have to understand the building blocks of the Violin storage array. NAND Flash chips of 4GB are packed into a Flash Package of 8 giving it 32GB. And 16 of these 32GB Flash Package are then consolidated into a 512GB VIMM (Violin Inline Memory Module). The VIMM is the starting block and can be considered as a “disk”, since we are used to the concept of “disk” in the storage networking world. 5 of these VIMMs will create a RAID group of 4+1 (four data and one parity), giving the redundancy, performance and capacity similar to RAID-5.
The block size used is 4K block and this 4K block is striped across the RAID group with 1K pages each on each of the VIMMs in the RAID group. Each of this 1K page is managed independently and can be placed anywhere in any flash block in the VIMMs, and spread out for lowest possible latency and bandwidth. This contributes to the “spike free latency” of Violin Memory. Additionally, there is ECC protection within each 1K page to correct flash bit error.
To protect against metadata corruption, there is an additional, built-in RAID Check bit to correct the VIMM errors. Lastly, one important feature that addresses the read-erase-write weakness of NAND Flash, the vRAID ensures that the slow erases never block a Read or a Write. This architectural feature enable spike-free latency in mixed Read/Write environments.
Here’s a quick overview of Violin’s vRAID architecture:
I still feel that we need a radical move away from the traditional RAID and vRAID is moving in the right direction to evolve RAID to meet the demands of the data storage market. Revolutionary and radical it may not be, but then again, is the market ready for anything else?
As I said, so far Violin is the only all-Flash vendor that has boldly come forward to meet the storage latency problem head-on, and they have been winning customers very quickly. Well done!

Is Dell Fluid Enough?

Dell made a huge splash 2 weeks ago in London in their inaugural Dell Storage Forum. They dubbed their storage and management lineup as “Fluid Data Architecture” offering the ability for customers to quickly adapt and automate their business when it comes to storage networking and more importantly, data management.

In the London show, they showcased several key innovations and product development. Here’s a list of their jewels:

  • DR4000 – an inline, content optimized backup deduplication appliance (based on the acquired technology of Ocarina Networks)
  • Compellent Storage Center 6.0 – a major software release
  • Compellent key technology integration with VMware
  • Optimized object storage for Microsoft Sharepoint with the DX6000 Object Storage Platform – DX6000 is an OEM from Caringo
  • Broader support for Dell Force10, PowerConnect and their partner’s Brocade

The technology from Ocarina Networks is fantastic technology and I have always admired Ocarina. I have written about Ocarina in the past in my previous blog. But I was a bit perplexed why Dell chose to enter the secondary dedupe market with a backup dedupe appliance in the DR4000. They are already a latecomer into the secondary deduplication game and I thought HP was already late with their StoreOnce.

They could have used Ocarina’s technology to trailblaze the primary deduplication market. In my previous blog, I mentioned that primary deduplication hasn’t really taken off in a big way, and Dell with the technology from Ocarina could set the standard and establish themselves as the leader of the primary deduplication market space. I was disappointed that they didn’t, not just yet.

The Compellent Storage Center 6.0 release was a major release and it was, for better or for worse, coincided with the departure of Phil Soran, the founder and CEO of Compellent. Phil felt that he can let his baby go and Dell is certainly making the best of what they can do with Compellent as their flagship data storage product.

The major release included 64-bit support for greater performance and scalability and also include several key VMware technologies that other vendors already have. The technologies included:

  • VMware vStorage API for Array Integration (VAAI)
  • Storage Replication Adapter plug-in for VMware Site Recovery Manager (SRM)
  • VSphere 5 client plug-in
  • Integration of Enterprise Manager and VSphere

Other storage related releases (I am not going to talk about Force10 or their PowerConnect solutions here) included Dell offering 16Gbps FibreChannel switches from Brocade and also their DX6000 Object Storage Platform optimized for Microsoft Sharepoint.

I think it is fantastic that Dell is adapting and evolving into a business-oriented, enterprise solution provider and their acquisitions in the past 3 years – EqualLogic, Exanet, Ocarina Networks, Force10 and Compellent – proves that Dell aims to take market share in the storage networking and data management market. They have key initiatives with CommVault, Symantec, VMware and Microsoft as well. And Michael Dell is becoming quite a celebrity lately, giving Dell the boost it needs to battle in this market.

But the question is, “Is their Fluid Data Architecture” fluid enough?” If I were a customer, would I bite?

As a customer, I look for completeness in the total solution, and I cannot fault Dell for having most of the pieces in the solution stack. They have networking in their PowerConnect, Force10 and Brocade. They have SAN in both Compellent and EqualLogic but their unified storage story is still a bit lacking. That’s because we have not seen Dell’s NAS storage yet. Exanet was a scale-out NAS and we have seen little rah-rah about this product.

From a data management perspective, their data protection story gels well with the Commvault and Symantec partnership, but I feel that Dell sales and SEs (at least in Malaysia) spends too much time touting the Compellent Automated Storage Tiering. I have spoken to folks who have listened to Dell guys’ pitches and it’s too one-dimensional. It’s always about storage tiering and little else about other Compellent technology.

At this point of time, the story that Dell sells here in Malaysia is still disjointed, but they are getting better. And eventually, the fluidity (pun intended ;-)) of their Fluid Data Architecture will soon improve.

How will Dell fare in 2012? They had taken a beating in the past 2 IDC’s quarter storage market tracker, losing some percentage points in market share but I think Dell will continue to tinker to get it right.

2012 will be their watershed year.