A conceptual distributed enterprise HCI with open source software

Cloud computing has changed everything, at least at the infrastructure level. Kubernetes is changing everything as well, at the application level. Enterprises are attracted by tenets of cloud computing and thus, cloud adoption has escalated. But it does not have to be a zero-sum game. Hybrid computing can give enterprises a balanced choice, and they can take advantage of the best of both worlds.

Open Source has changed everything too because organizations now has a choice to balance their costs and expenditures with top enterprise-grade software. The challenge is what can organizations do to put these pieces together using open source software? Integration of open source infrastructure software and applications can be complex and costly.

The next version of HCI

Hyperconverged Infrastructure (HCI) also changed the game. Integration of compute, network and storage became easier, more seamless and less costly when HCI entered the market. Wrapped with a single control plane, the HCI management component can orchestrate VM (virtual machine) resources without much friction. That was HCI 1.0.

But HCI 1.0 was challenged, because several key components of its architecture were based on DAS (direct attached) storage. Scaling storage from a capacity point of view was limited by storage components attached to the HCI architecture. Some storage vendors decided to be creative and created dHCI (disaggregated HCI). If you break down the components one by one, in my opinion, dHCI is just a SAN (storage area network) to HCI. Maybe this should be HCI 1.5.

A new version of an HCI architecture is swimming in as Angelfish

Kubernetes came into the HCI picture in recent years. Without the weights and dependencies of VMs and DAS at the HCI server layer, lightweight containers orchestrated, mostly by, Kubernetes, made distribution of compute easier. From on-premises to cloud and in between, compute resources can easily spun up or down anywhere.

Continue reading

The Falcon to soar again

One of the historical feats which had me mesmerized for a long time was the 14-year journey China’s imperial treasures took to escape the Japanese invasion in the early 1930s, sandwiched between rebellions and civil wars in China. More than 20,000 pieces of the imperial treasures took a perilous journey to the west and back again. Divided into 3 routes over a decade and four years, not a single piece of treasure was broken or lost. All in the name of preservation.

Today, that 20,000 over pieces live in perpetuity in 2 palaces – Beijing Palace Museum in China and National Palace Museum Taipei in Taiwan

Digital data preservation

Digital data preservation is on another end of the data lifecycle spectrum. More often than not, it is not the part that many pay attention to. In the past 2 decades, digital data has grown so much that it is now paramount to keep the data forever. Mind you, this is not the data hoarding kind but to preserve the knowledge and wisdom which is in the digital content of the data.

[ Note: If you are interested to know more about Data -> Information -> Knowledge -> Wisdom, check out my 2015 article on LinkedIn ]

SNIA (Storage Networking Industry Association) conducted 2 surveys – one in 2007 and another in 2017 – called the 100 Year Archive, and found that the requirement for preserving digital data has grown multiple folds over the 10 years. In the end, the final goal is to ensure that the perpetual digital contents are

  • Accessible
  • Undamaged
  • Usable

All at an affordable cost. Therefore, SNIA has the vision that the digital content must transcend beyond the storage medium, the storage system and the technology that holds it.

The Falcon reemerges

A few weeks ago, I had the privilege to speak with Falconstor® Software‘s David Morris (VP of Global Product Strategy & Marketing) and Mark Delsman (CTO). It was my first engagement with Falconstor® in almost 9 years! I wrote a piece of Falconstor® in my blog in 2011.

Continue reading

Paradigm shift of Dev to Storage Ops

[ Disclosure: I was invited by GestaltIT as a delegate to their Storage Field Day 19 event from Jan 22-24, 2020 in the Silicon Valley USA. My expenses, travel, accommodation and conference fees were covered by GestaltIT, the organizer and I was not obligated to blog or promote the vendors’ technologies presented at the event. The content of this blog is of my own opinions and views ]

A funny photo (below) came up on my Facebook feed a couple of weeks back. In an honest way, it depicted how a developer would think (or the lack of thinking) about the storage infrastructure designs and models for the applications and workloads. This also reminded me of how DBAs used to diss storage engineers. “I don’t care about storage, as long as it is RAID 10“. That was aeons ago 😉

The world of developers and the world of infrastructure people are vastly different. Since cloud computing birthed, both worlds have collided and programmable infrastructure-as-code (IAC) have become part and parcel of cloud native applications. Of course, there is no denying that there is friction.

Welcome to DevOps!

The Kubernetes factor

Containerized applications are quickly defining the cloud native applications landscape. The container orchestration machinery has one dominant engine – Kubernetes.

In the world of software development and delivery, DevOps has taken a liking to containers. Containers make it easier to host and manage life-cycle of web applications inside the portable environment. It packages up application code other dependencies into building blocks to deliver consistency, efficiency, and productivity. To scale to a multi-applications, multi-cloud with th0usands and even tens of thousands of microservices in containers, the Kubernetes factor comes into play. Kubernetes handles tasks like auto-scaling, rolling deployment, computer resource, volume storage and much, much more, and it is designed to run on bare metal, in the data center, public cloud or even a hybrid cloud.

Continue reading

Hybrid is the new Black

It is hard for enterprise to let IT go, isn’t it?

For years, we have seen the cloud computing juggernaut unrelenting in getting enterprises to put their IT into public clouds. Some of the biggest banks have put their faith into public cloud service providers. Close to home, Singapore United Overseas Bank (UOB) is one that has jumped into the bandwagon, signing up for VMware Cloud on AWS. But none will come bigger than the US government Joint Enterprise Defense Infrastructure (JEDI) project, where AWS and Azure are the last 2 bidders for the USD10 billion contract.

Confidence or lack of it

Those 2 cited examples should be big enough to usher enterprises to confidently embrace public cloud services, but many enterprises have been holding back. What gives?

In the past, it was a matter of confidence and the FUDs (fears, uncertainties, doubts). News about security breaches, massive blackouts have been widely spread and amplified to sensationalize the effects and consequences of cloud services. But then again, we get the same thing in poorly managed data centers in enterprises and government agencies, often with much less fanfare. We shrug our shoulder and say “Oh well!“.

The lack of confidence factor, I think, has been overthrown. The “Cloud First” strategy in enterprises in recent years speaks volume of the growing and maturing confidence in cloud services. The poor performance and high latency reasons, which were once an Achilles heel of cloud services, are diminishing. HPC-as-a-Service is becoming real.

The confidence in cloud services is strong. Then why is on-premises IT suddenly is a cool thing again? Why is hybrid cloud getting all the attention now?

Hybrid is coming back

Even AWS wants on-premises IT. Its Outposts offering outlines its ambition. A couple of years earlier, the Azure Stack was already made beachhead on-premises in its partnership with many server vendors. VMware, is in both on-premises and the public clouds. It has strong business and technology integration with AWS and Azure. IBM Cloud, Big Blue is thinking hybrid as well. 2 months ago, Dell jumped too, announcing Dell Technologies Cloud with plenty of a razzmatazz, using all the right moves with its strong on-premises infrastructure portfolio and its crown jewel of the federation, VMware. Continue reading

Pondering Redhat’s future with IBM

I woke up yesterday morning with a shocker of a news. IBM announced that they were buying Redhat for USD34 billion. Never in my mind that Redhat would sell but I guess that USD190.00 per share was too tempting. Redhat (RHT) was trading at USD116.68 on the previous Friday’s close.

Redhat is one of my favourite technology companies. I love their Linux development and progress, and I use a lot of Fedora and CentOS in my hobbies. I started with Redhat back in 2000, when I became obsessed to get my RHCE (Redhat Certified Engineer). I recalled on almost every weekend (Saturday and Sunday) back in 2002 when I was in the office, learning Redhat, and hacking scripts to be really good at it. I got certified with RHCE 4 with a 96% passing mark, and I was very proud of my certification.

One of my regrets was not joining Redhat in 2006. I was offered the job as an SE by Josep Garcia, and the very first position in Malaysia. Instead, I took up the Hitachi Data Systems job to helm the project implementation and delivery for the Shell GUSto project. It might have turned out differently if I did.

The IBM acquisition of Redhat left a poignant feeling in me. In many ways, Redhat has been the shining star of Linux. They are the only significant one left leading the charge of open source. They are the largest contributors to the Openstack projects and continue to support the project strongly whilst early protagonists like HPE, Cisco and Intel have reduced their support. They are of course, the perennial top 3 contributors to the Linux kernel since the very early days. And Redhat continues to contribute to projects such as containers and Kubernetes and made that commitment deeper with their recent acquisition of CoreOS a few months back.

Continue reading

My dilemma of stateful storage marriage

I should be a love match maker.

I have been spending much hours in the past few months, thinking of stateful data in stateful storage containers and how they would consummate with distributed applications containers and functions-as-a-service (aka serverless, aka Lambda). It still hasn’t made much sense, and I have not solved this problem yet. Although there were bits and pieces that coming together and the jigsaw looked well enough to give a cackled reply, what I have now is still not good enough for me. I am still searching for answers, better than the ones I have now.

The CAP theorem is in center of my mind. Distributed data, distributed states of data are on my mind. And by the looks of things, the computing world is heading towards containers and serverless computing too. Both distributed applications containers and serverless computing make a lot of sense. If we were to engage a whole new world of fog computing, edge computing, IoT, autonomous systems, AI, and other real-time computing, I would say that the future belongs to decentralization. Cloud Computing and having edge systems and devices getting back to the cloud for data is too slow. The latency of micro- or even nano-seconds is just not good enough. If we rely on the present methods to access the most relevant data, we are too late.

Continue reading

Solaris virgin again!

This week I went off the beaten track to get back to my first love – Solaris. Now that Oracle owns it, it shall be known as Oracle Solaris. I am working on a small project based on (Oracle) Solaris Containers and I must say, I am intrigued by it. And I felt good punching the good ‘ol command lines in Solaris again.

Oracle actually offers a lot of virtualization technologies – Oracle VM, Oracle VM Dynamic Domains, Oracle Solaris Logical Domains (LDOMs), Oracle Solaris Containers (aka Zones) and Oracle VirtualBox. Other than VirtualBox, the other VE (Virtualized Environment) solutions are enterprise solutions but unfortunately, they lack the pizazz of VMware at this point in time. From my perspective, they are also very Oracle/Solaris-centric, making them less appealing to the industry at this moment

Here’s an old Sun diagram of what Sun virtualization solutions are:

What I am working on this week is Solaris Containers or Zones. The Containers solution is rather similar to VMware’s gamut of Tier-2 Virtualization solutions that are host-based. Solutions that fall into this category are VMware Server, VMware Workstation, VMware Player, VMware ACE and VMware Fusion for MacOS. Therefore, it requires a host OS to run the Solaris Containers.

I did not have a Solaris Resource Manager software to run the GUI stuff, so I had to get back to basics with CLI, which is good for  me. In fact, I liked it even more and with the CLI, I could pretty much create zones with ease. And given the fact that the host OS is Solaris 10, I could instantly feel the robustness, the performance, the stability and the power of Solaris 10, unlike the flaky Windows hosting VMware host-based virtualization solutions or the iffiness of Linux.

A more in depth look of Solaris Containers/Zones is shown below.

At first touch, 2 things impressed me

  • The isolation of each Container and its global master domain is very well defined. What can be done, and what cannot be done; what can be configured and what cannot, is very clear and the configurability of each parameter is quickly acknowledged and controlled by the Solaris kernel. From what I read, Solaris Containers has achieved the highest level of security with its Trusted Extension component, which is a re-implementation of Trusted Solaris. Solaris 10 has received the highest commercial level of Common Criteria Certification.  This is known as EAL4+ and has been accepted by the U.S DoD (Department of Defense).
  • It’s simplicity in administering compute and memory resources to the Containers. I will share that in CLI with you later.

To start, we acknowledge that there is likely a global zone that has been created when Solaris 10 was first installed.

 

To create a zone and configuring it with CLI, it is pretty straightforward. Here’s a glimpse of what I did yesterday.

# zonecfg –z perf-rac1

Use ‘create’ to be configuring a zone

zonecfg:perf-rac1> create

zonecfg:perf-rac1> set zonepath=rpool/perfzones/perf-rac1

zonecfg:perf-rac1> set autoboot=true

zonecfg:perf-rac1> remove inherit-pkg-dir dir=/lib

zonecfg:perf-rac1> remove inherit-pkg-dir dir=/sbin

zonecfg:perf-rac1> remove inherit-pkg-dir dir=/usr

zonecfg:perf-rac1> remove inherit-pkg-dir dir=/usr/local

zonecfg:perf-rac1> add net

zonecfg:perf-rac1:net> set address=<input from parameter>

zonecfg:perf-rac1:net> set physical=<bge0|or correct Ethernet interface>

zonecfg:perf-rac1:net> end

zonecfg:perf-rac1> add dedicated-cpu

zonecfg:perf-rac1:dedicated-cpu> set ncpus=2-4 (or any potential cpus on sun box)

zonecfg:perf-rac1:dedicated-cpu>end

zonecfg:perf-rac1> add capped-memory

zonecfg:perf-rac1:capped-memory> set physical=4g

zonecfg:perf-rac1:capped-memory>set swap=1g

zonecfg:perf-rac1:capped-memory>set locked=1g

zonecfg:perf-rac1:capped-memory>end

zonecfg:perf-rac1> verify

zonecfg:perf-rac1> commit

zonecfg:perf-rac1> exit

The command zonecfg -z <zonename> triggers a configuration prompt where I run create to create the zone. I set the zonepath to list where the zone files will be contained and set the autoboot=true so that it will automatically start during a reboot.

Solaris Containers is pretty cool where it has the ability to either inherit or share the common directories such as /usr, /lib, /sbin and others or create its own set of directories separate from the global root directory tree. Here I choose to remove the inheritance and allow the Solaris in the Container to have its own independent directories.

The commands add net sends me into another sub-category where I can configure the network interface as well as the network address. Nothing spectacular there. I end  the configuration and do a couple of cool things which are related to resource management.

I have added add dedicated-cpu and set ncpus=2-4 and also add capped-memory of physical=4g, swap=1gb, locked=1gb. What I have done is to allocate a minimum of 2 CPU resources and a maximum of 4 CPU resources (if resource permits) to the zone called perf-rac1. Additionally, I have allowed it to have a capped memory of at most 4GB of RAM, with assured of 1GB of RAM. Swap space wis set at 1GB.

This resource management allows me to build a high performance Solaris Container for Oracle 11g RAC. Of course, you are free to create as many containers as long as the system resources allow it. Note that I did not include the shared memory and semaphores parameters required for Oracle 11g RAC but go ahead and consult your favourite Oracle DBA (have fun doing so!)

After the perf-rac1 zone/container has been created (and configured), I just need to run the following

# zoneadm –z perf-rac1 install

# zoneadm –z perf-rac1 boot

These 2 commands will install the zone and start the installation process. It will copy all the packages from the global zone and start the installation as per normal. Once the “installation” is complete, there will be the usual Solaris configuration form where information such as timezone, IP address, root login/password and so on are input. That will take about 20-40 minutes, depending on the amount of things to be installed and of course, the power of the Sun system. I am running an old Sun V210 with 512MB, so it took a while.

When it’s done, we can just login into the zone with the command

# zlogin –C perf-rac1

and I get into another Solaris OS in the Solaris Container.

What I liked what the fact that Solaris Containers is rather simple to understand but the flexibility to configure computing resources to it is pretty impressive. It’s fun working on this stuff again after years away from Solaris. (This was after I took my RedHat RHCE certification and I pretty much left Sun Solaris for quite a while).

More testing to be done, but overall I am quite happy to be back as a Solaris virgin again.