My dilemma of stateful storage marriage

I should be a love match maker.

I have been spending much hours in the past few months, thinking of stateful data in stateful storage containers and how they would consummate with distributed applications containers and functions-as-a-service (aka serverless, aka Lambda). It still hasn’t made much sense, and I have not solved this problem yet. Although there were bits and pieces that coming together and the jigsaw looked well enough to give a cackled reply, what I have now is still not good enough for me. I am still searching for answers, better than the ones I have now.

The CAP theorem is in center of my mind. Distributed data, distributed states of data are on my mind. And by the looks of things, the computing world is heading towards containers and serverless computing too. Both distributed applications containers and serverless computing make a lot of sense. If we were to engage a whole new world of fog computing, edge computing, IoT, autonomous systems, AI, and other real-time computing, I would say that the future belongs to decentralization. Cloud Computing and having edge systems and devices getting back to the cloud for data is too slow. The latency of micro- or even nano-seconds is just not good enough. If we rely on the present methods to access the most relevant data, we are too late.

Continue reading

Of Object Storage, Filesystems and Multi-Cloud

Data storage silos everywhere. The early clarion call was to eliminate IT data storage silos by moving to the cloud. Fast forward to the present. Data storage silos are still everywhere, but this time, they are in the clouds. I blogged about this.

Object Storage was all the rage when it first started. AWS, with its S3 (Simple Storage Service) offering, started the cloud storage frenzy. Highly available, globally distributed, simple to access, and fitted superbly into the entire AWS ecosystem. Quickly, a smorgasbord of S3-compatible, S3-like object-based storage emerged. OpenStack Swift, HDS HCP, EMC Atmos, Cleversafe (which became IBM SpectrumScale), Inktank Ceph (which became RedHat Ceph), Bycast (acquired by NetApp to be StorageGrid), Quantum Lattus, Amplidata, and many more. For a period of a few years prior, it looked to me that the popularity of object storage with an S3 compatible front has overtaken distributed file systems.

What’s not to like? Object storage are distributed, they are metadata rich (at a certain structural level), they are immutable (hence secure from a certain point of view), and some even claim self-healing (depending on data protection policies). But one thing that object storage rarely touted dominance was high performance I/O. There were some cases, but they were either fronted by a file system (eg. NFSv4.1 with pNFS extensions), or using some host-based, SAN-client agent (eg. StorNext or Intel Lustre). Object-based storage, in its native form, has not been positioned as high performance I/O storage.

A few weeks ago, I read an article from Storage Soup, Dave Raffo. When I read it, it felt oxymoronic. SwiftStack was just nominated as a visionary in the Gartner Magic Quadrant for Distributed File Systems and Object Storage. But according to Dave’s article, Swiftstack did not want to be “associated” with object storage that much, even though Swiftstack’s technology underpinning was all object storage. Strange.

Continue reading