Where are your files living now?

[ This is Part One of a longer conversation ]

EMC2 (before the Dell® acquisition) in the 2000s had a tagline called “Where Information Lives™**. This was before the time of cloud storage. The tagline was an adage of enterprise data storage, proper and contemporaneous to the persistent narrative at the time – Data Consolidation. Within the data consolidation stories, thousands of files and folders moved about the networks of the organizations, from servers to clients, clients to servers. NAS (Network Attached Storage) was, and still is the work horse of many, many organizations.

[ **Side story ] There was an internal anti-EMC joke within NetApp® called “Information has a new address”.

EMC tagline “Where Information Lives”

This was a time where there were almost no concerns about Shadow IT; ransomware were less known; and most importantly, almost everyone knew where their files and folders were, more or less (except in Oil & Gas upstream – to be told in later in this blog). That was because there were concerted attempts to consolidate data, and inadvertently files and folders, in the organization.

Even when these organizations were spread across the world, there were distributed file technologies at the time that could deliver files and folders in an acceptable manner. Definitely not as good as what we have today in a cloudy world, but acceptable. I personally worked a project setting up Andrew File Systems for Intel® in Penang in the mid-90s, almost joined Tacit Networks in the mid-2000s, dabbled on Microsoft® Distributed File System with NetApp® and Windows File Servers while fixing the mountains of issues in deploying the worldwide GUSto (Global Unified Storage) Project in Shell 2006. Somewhere in my chronological listings, Acopia Networks (acquired by F5) and of course, EMC2 Rainfinity and NetApp® NuView OEM, Virtual File Manager.

The point I am trying to make here is most IT organizations had a good grip of where the files and folders were. I do not think this is very true anymore. Do you know where your files and folders are living today? 

Continue reading

Enterprise Storage is not just a Label

I have many anecdotes around the topic of Enterprise Storage, but the conversations in the past 2 weeks made it important for me to share this.

Enterprise Storage is …

Amusing, painful, angry

I get riled up whenever people do not want to be educated about Enterprise Storage. Here are a few that happened in the last 2 weeks.

[ Story #1 ]

A guy was building his own storage for cryptocurrency. He was informed by his supplier that the RAID card was enterprise, and he could get the best performance using “Enterprise” RAID-0.

  • Well, “Enterprise” RAID-0 volume crashed, and he lost all data. Painfully, he said he lost a hefty sum financially

[ Story #2 ]

A media company complained about the reliability of previous storage vendor. The GM was shopping around and was told that there are “Enterprise” SATA drives and the reliability is as good, if not better than SAS drives.

  • The company wanted a fully reliable Enterprise Storage system with 99.999% availability, and yet the SATA interface was not meant to build a more highly reliable enterprise storage. The GM insisted to use “Enterprise” SATA drives for his “enterprise” storage system instead of SAS.  

[ Story #3 ]

An IT admin of a manufacturing company claimed that they had an “Enterprise Storage” system for a few years, and could not figure out why his hard disk drives would die every 12-15 months.

  • He figured out that the drives supplied by his vendor were consumer SATA drives, even though he was told it was an “Enterprise Storage” system when he bought the system.

Continue reading

Malaysia data privacy is still shambolic

2 years ago, I wrote an article on LinkedIn titled “Malaysia, when will you take data privacy seriously?“. What has changed? Very little. 

Last Friday I received an SMS and a WhatsApp message from an ex-bank employee who was terminated from a complaint I made (not about him) about the bank violating my data privacy. The bank and/or their agents have been calling my number for several years (more than 5), and I have made numerous (many, many) requests not to be called or have my name deleted from their calling database. This has fallen into deaf ears until I decided to take matters into my own hands.

Red means NO!

In May of this year, I decided to use Twitter to tweet my unpleasant experiences and my displeasure to the bank’s Twitter handle. They responded with canned replies and made promises that really did not amount to anything. Right after my 2nd last complaint to date, the following day I got another telemarketer from the bank calling me (again) trying to sell me their insurance package. By now, I already got their head of customer advocacy center’s contact and I called him to complain again. This complaint got this telemarketer from the bank fired. Friday, this ex-employee sent me a WhatsApp and an SMS message telling his side of the story, asked me to withdraw my complaint and have him reinstated.

Continue reading

Encryption Key Management in TrueNAS

iXsystems™ TrueNAS® has moved up a notch when it comes to encrypting data structures in the storage . In additional to supporting self encrypting disks (SEDs) and zpool encryption, version 12.0 added dataset and zvol encryption as well.

The world has become a dangerous place. The security hacks, the data leaks, the ransomware scourge have dominated the IT news in 2021, and we are only 3 months into the year. These cybersecurity threats are about to get worse and we have to be vigilant to deescalate the impacts of these threats. As such, TrueNAS® Enterprise has progressed forward to protect the data structures in its storage arrays, in addition to many other security features depicted below:

TrueNAS Multilayer Security

Key Management Interoperability Protocol (KMIP)

One of the prominent cybersecurity features in TrueNAS® Enterprise is KMIP support in version 12.0.

What is KMIP? KMIP is a client-server framework for encryption key management. It is a standard released in 2010 and governed by OASIS Open. OASIS stands for Organization for the Advancement of Structured Information Standards.

Continue reading

Relinquishing Freedom in our Digital Future

There was a TV cartoon show I loved when I was a kid called “Wait till your Father gets home“. I was probably 5 or 6 then, but I can still remember the mother was practically nagging all the time of having the father to come back to deal with the problems and issues caused by the kids, and sometimes the dog.

This patriarchal mentality of having the male manning (yeah, it is not a gender neutral word) the household is also, unfortunately, mimicked in our societies, in general, being obedient and subservient to the government of the day. This is especially true in East Asian societies, .

While dissent of this mindset is sprouting in the younger generation of these societies, you can see the dichotomy of the older generation and the younger one in the recent protests in Thailand and the on-going one in Myanmar. The older generation is likely fearful of the consequences and there are strong inclinations to accept and subject their freedom to be ruled by the rulers of the day. It is almost like part of their psyche and DNA.

So when I read the article published by Data Storage Asean titled “Malaysians Optimistic on Giving the Government Increased Access to Personal Data for Better Services“, I was in two minds. Why are we giving away our Personal Data when we do not get a guarantee that the our privacy is protected?

Data Privacy should be in our own hands

Why are we giving away our freedom in new digital Malaysia when in history, we have not been truly protected of that freedom? 

Continue reading

When you buy storage solutions on price alone

Most people won’t bat an eye buying a car. It is a status symbol for many, but the value of the work returned from the car to the cost of buying the car is a great disparity. Furthermore, the price of the car depreciates quickly, making the “investment” more like an act of losing money fast.

So the story begins. When it comes to buying a storage technology platform, the initial price on the quote more or less decide the outcome. The reply of “Too expensive!” with little consideration about the returns of certain values relative to the initial buying price is far too frequent and plenty.

There has to be more considerations about these values. Here are in buying a storage technology platform besides just the initial price.

Performance

One recent conversation was about Intel® Optane™ vs NAND Flash. An well-known online eCommerce proprietor in South East Asia decided to go against the grain, and went for the more “expensive” Optane™ instead of the getting an array of NAND Flash NVMe SSDs.

Continue reading

Multicloud is sprouting Storage Silos

Grain Silos

We get an avalanche of multicloud selling from storage vendors. We get promises and benefits of multicloud but from whose point of view?

Multicloud is multiple premises

This is an overly simplistic example how I created 3 copies of the same spreadsheet yesterday. I have a quotation on Google Sheets. A fairly complicated one. Someone wanted it in Excel format, but the format and the formulas were all messed up when I tried to download it as XLSX. What I had to do was to download the Google Sheets as ODS (OpenDocument Spreadsheet) format to my laptop, and then upload the LibreOffice file to my OneDrive account, and use Excel Online to open the ODS file and saved as XLSX. In one fell swoop, I have the same spreadsheet in Google Drive, my laptop and OneDrive. 3 copies in 3 different premises. 

As we look to the behaviour of data creation and data acquisition, data sharing and data movement, the central repository is the gold image, the most relevant copy of the data. However, for business reasons, data has to be moved to where the applications are. It could be in cloud A or cloud B or cloud C or it could be on-premises. The processed output from cloud A is stored in cloud A, and likewise, cloud B in cloud B and so on.

To get the most significant and relevant copy, data from all premises must be consolidated, thus it has to be moved to a centralized data storage repository. But intercloud data movement is bogged down by egress fees, latency, data migration challenges (like formats and encoding), security, data clearance policies and many other hoops and hurdles.

With all these questions and concerns in mind, the big question mark is “Is multicloud really practical?” From a storage guy like me who loves a great data management story, “It is not. Multicloud creates storage silos“.

Continue reading

Layers in Storage – For better or worse

Storage arrays and storage services are built upon by layers and layers beneath its architecture. The physical components of hard disk drives and solid states are abstracted into RAID volumes, virtualized into other storage constructs before they are exposed as shares/exports, LUNs or objects to the network.

Everyone in the storage networking industry, is cognizant of the layers and it is the foundation of knowledge and experience. The public cloud storage services side is the same, albeit more opaque. Nevertheless, both have layers.

In the early 2000s, SNIA® Technical Council outlined a blueprint of the SNIA® Shared Storage Model, a framework describing layers and properties of a storage system and its services. It was similar to the OSI 7-layer model for networking. The framework helped many industry professionals and practitioners shaped their understanding and the development of knowledge in their respective fields. The layering scheme of the SNIA® Shared Storage Model is shown below:

SNIA Shared Storage Model – The layering scheme

Storage vendors layering scheme

While SNIA® storage layers were generic and open, each storage vendor had their own proprietary implementation of storage layers. Some of these architectures are simple, but some, I find a bit too complex and convoluted.

Here is an example of the layers of the Automated Volume Management (AVM) architecture of the EMC® Celerra®.

EMC Celerra AVM Layering Scheme

I would often scratch my head about AVM. Disks were grouped into RAID groups, which are LUNs (Logical Unit Numbers). Then they were defined as Celerra® dvols (disk volumes), and stripes of the dvols were consolidated into a storage pool.

From the pool, a piece of a storage capacity construct, called a slice volume, were combined with other slice volumes into a metavolume which eventually was presented as a file system to the network and their respective NAS clients. Explaining this took an effort because I was the IP Storage product manager for EMC® between 2007 – 2009. It was a far cry from the simplicity of NetApp® ONTAP 7 architecture of RAID groups and volumes, and the WAFL® (Write Anywhere File Layout) filesystem.

Another complicated layered framework I often gripe about is Ceph. Here is a look of how the layers of CephFS is constructed.

Ceph Storage Layered Framework

I work with the OpenZFS filesystem a lot. It is something I am rather familiar with, and the layered structure of the ZFS filesystem is essentially simpler.

Storage architecture mixology

Engineers are bizarre when they get too creative. They have a can do attitude that transcends the boundaries of practicality sometimes, and boggles many minds. This is what happens when they have their own mixology ideas.

Recently I spoke to two magnanimous persons who had the idea of providing Ceph iSCSI LUNs to the ZFS filesystem in order to use the simplicity of NAS file sharing capabilities in TrueNAS® CORE. From their own words, Ceph NAS capabilities sucked. I had to draw their whole idea out in a Powerpoint and this is the architecture I got from the conversation.

There are 3 different storage subsystems here just to provide NAS. As if Ceph layers aren’t complicated enough, the iSCSI LUNs from Ceph are presented as Cinder volumes to the KVM hypervisor (or VMware® ESXi) through the Cinder driver. Cinder is the persistent storage volume subsystem of the Openstack® project. The Cinder volumes/hypervisor datastore are virtualized as vdisks to the respective VMs installed with TrueNAS® CORE and OpenZFS filesystem. From the TrueNAS® CORE, shares and exports are provisioned via the SMB and NFS protocols to Windows and Linux respectively.

It works! As I was told, it worked!

A.P.P.A.R.M.S.C. considerations

Continuing from the layered framework described above for NAS, other aspects beside the technical work have to be considered, even when it can work technically.

I often use a set of diligent data storage focal points when considering a good storage design and implementation. This is the A.P.P.A.R.M.S.C. Take for instance Protection as one of the points and snapshot is the technology to use.

Snapshots can be executed at the ZFS level on the TrueNAS® CORE subsystem. Snapshots can be trigged at the volume level in Openstack® subsystem and likewise, rbd snapshots at the Ceph subsystem. The question is, which snapshot at which storage subsystem is the most valuable to the operations and business? Do you run all 3 snapshots? How do you execute them in succession in a scheduled policy?

In terms of performance, can it truly maximize its potential? Can it churn out the best IOPS, and deliver at wire speed? What is the latency we can expect with so many layers from 3 different storage subsystems?

And supporting this said architecture would be a nightmare. Where do you even start the troubleshooting?

Those are just a few considerations and questions to think about when such a layered storage architecture along. IMHO, such a design was over-engineered. I was tempted to say “Just because you can, doesn’t mean you should

Elegance in Simplicity

Einstein (I think) quoted:

Einstein’s quote on simplicity and complexity

I am not saying that having too many layers is wrong. Having a heavily layered architecture works for many storage solutions out there, where they are often masked with a simple and intuitive UI. But in yours truly point of view, as a storage architecture enthusiast and connoisseur, there is beauty and elegance in simple designs.

The purpose here is to promote better understanding of the storage layers, and how they integrate and interact with each other to deliver the data services to the network. In the end, that is how most storage architectures are built.