Rethinking Storage OKRs for AI Data Infrastructure – Part 1

[ Preamble: This analysis focuses on my own journey as I incorporate my past experiences into this new market segment called AI Data Infrastructure, and gaining new ones.

There are many elements of HPC (High Performance Computing) at play here. Even though things such as speeds and feeds, features and functions crowd many conversations, as many enterprise storage vendors like to do, these conversations, in my opinion, are secondary. There are more vital and important operational technology and technical elements that an organization has to consider prudently, vis-a-vis to ROIs (returns of investments). They involve asking the hard questions beyond the marketing hype and fluff. I call these elements of consideration Storage Objectives and Key Results (OKRs) for AI Data Infrastructure.

I had to break this blog into 2 parts. It has become TL;DR-ish. This is Part 1 ]

I have just passed my 6-month anniversary with DDN. Coming into the High Performance Storage System (HPSS) market segment, with the strong focus on the distributed parallel filesystem of Lustre®, there was a high learning curve for me. I spend over 3 decades in Enterprise Storage, with some of the highest level of storage technologies there were in that market segment. And I have already developed my own approach to enterprise storage, based on the A.P.P.A.R.M.S.C.. That was already developed and honed from 25 years ago.

The rapid adoption of AI has created a technology paradigm shift. Artificial Intelligence (AI) came in and blurred many lines. It also has been evolving my thinking when it comes to storage for AI. There is also a paradigm shift in my thoughts, opinions and experiences as well.

AI has brought HPSS technologies like Lustre® in DDN EXAscaler platform , proven in the Supercomputing world, to a new realm – the AI Data Infrastructure market segment. On the other side, many enterprise storage vendors aspire to be a supplier to the AI Data Infrastructure opportunities as well. This convergence from the top storage performers for Supercomputing, in the likes of DDN, IBM® (through Storage Scale), HPE® (through Cray, which by-the-way often uses the open-source Lustre® edition in its storage portfolio), from the software-defined storage players in Weka IO, Vast Data, MinIO, and from the enterprise storage array vendors such as NetApp®, Pure Storage®, and Dell®.

[ Note that I take care not to name every storage vendor for AI because many either do OEMs or repacking and rebranding of SDS technology into their gear such as HPE® GreenLake for Files and Hitachi® IQ. You can Google to find out who the original vendors are for each respectively. There are others as well. ]

In these 3 simplified categories (HPSS, SDS, Enterprise Storage Array), I have begun to see a pattern of each calling its technology as an “AI Data Infrastructure”. At the same time, I am also developing a new set of storage conversations for the AI Data Infrastructure market segment, one that is based on OKRs (Objectives and Key Results) rather than just features, features and more features that many SDS and enterprise storage vendors like to tout. Here are a few thoughts that we should look for when end users are considering a high-speed storage solution for their AI journey.

AI Data Infrastructure

GPU is king

In the AI world, the GPU infrastructure is the deity at the altar. The utilization rate of the GPUs is kept at the highest to get the maximum compute infrastructure return-on-investment (ROI). Keeping the GPUs resolutely busy is a must. HPSS is very much part of that ecosystem.

These are a few OKRs I would consider the storage or data infrastructure for AI.

  • Reliability
  • Speed
  • Power Efficiency
  • Security

Let’s look at each one of them from the point of view of a storage practitioner like me.

Continue reading

AI and the Data Factory

When I first heard of the word “AI Factory”, the world was blaring Jensen Huang‘s keynote at NVIDIA GTC24. I thought those were cool words, since he mentioned about the raw material of water going into the factory to produce electricity. The analogy was spot on for the AI we are building.

As I engage with many DDN partners and end users in the region, week in, week out, the “AI Factory” word keeps popping into conversations. Yet, many still do not know how to go about building this “AI Factory”. They only know they need to buy GPUs, lots of them. These companies’ AI ambitions are unabated. And IDC predicts that worldwide spending on AI will double by 2028, and yet, the ROI (returns on investment) remains elusive.

At the ground level, based on many conversations so far, the common theme is, the steps to begin building the AI Factory are ambiguous and fuzzy to most. I like to share my views from a data storage point of view. Hence, my take on the Data Factory for AI.

Are you AI-ready?

We have to have a plan but before we take the first step, we must look at where we are standing at the present moment. We know that to train AI, the proverbial step is, we need lots of data. Deep Learning (DL) works with Large Language Models (LLMs), and Generative AI (GenAI), needs tons of data.

If the company knows where they are, they will know which phase is next. So, in the AI Maturity Model (I simplified the diagram below), where is your company now? Are you AI-ready?

Simplified AI Maturity Model

Get the Data Strategy Right

In his interview with CRN, MinIO’s CEO AB Periasamy quoted “For generative AI, they realized that buying more GPUs without a coherent data strategy meant GPUs are going to idle out”. I was struck by his wisdom about having a coherent data strategy because that is absolutely true. This is my starting point. Having the Right Data Strategy.

In the AI world, from a data storage guy, data is the fuel. Data is the raw material that Jensen alluded to, if it was obvious. We have heard this anecdotal quote many times before, even before the AI phenomenon took over. AI is data-driven. Data is vital for the ROI of AI projects. And thus, we must look from the point of the data to make the AI Factory successful.

Continue reading

Accelerated Data Paths of High Performance Storage is the Cornerstone of building AI

It has been 2 months into my new role at DDN as a Solutions Architect. With many revolving doors around me, I have been trying to find the essence, the critical cog of the data infrastructure that supports the accelerated computing of the Nvidia GPU clusters. The more I read and engage, a pattern emerged. I found that cog in the supercharged data paths between the storage infrastructure systems and the GPU clusters. I will share more.

To set the context, let me start with a wonderful article I read in CIO.com back in July 2024. It was titled “Storage: The unsung hero of AI deployments“. It was music to my ears because as a long-time practitioner in the storage technology industry, it is time the storage industry gets its credit it deserves.

What is the data path?

To put it simply, a Data Path, from a storage context, is the communication route taken by the data bits between the compute system’s processing and program memory and the storage subsystem. The links and the established sessions can be within the system components such as the PCIe bus or external to the system through the shared networking infrastructure.

High speed accelerated data paths

In the world of accelerated computing such as AI and HPC, there are additional, more advanced technologies to create even faster delivery of the data bits. This is the accelerated data paths between the compute nodes and the storage subsystems. Following on, I share a few of these technologies that are lesser used in the enterprise storage segment.

Continue reading

Nurturing Data Governance for Cybersecurity and AI

Towards the middle of the 2000s, I started getting my exposure in Data Governance. This began as I was studying and practising to be certified as an Oracle Certified Professional (OCP) circa 2002-2003. My understanding of the value of data and databases in the storage world, now better known as data infrastructure, grew and expanded quickly. I never gotten my OCP certification because I ran out of money investing in the 5 required classes that included PL/SQL, DBA Admin I and II, and Performance Tuning. My son, Jeffrey was born in 2002, and money was tight.

The sentiment of data governance of most organizations I have engaged with at that time, and over the next course of almost 18 years or so, pre-Covid, the practice of data governance was to comply to some regulatory requirements. 

All that is changing. Early 2024, NIST released the second version of their Cybersecurity Framework (CSF). CSF 2.0 placed Data Governance in the center of the previous 5 pillars of CSF 1.1. The diagram below shows the difference between the versions.

High level change of Cybersecurity Framework 1.1 to 2.0.

Ripples like this in my data management radar are significant, noticeable and important to me. I blogged about it in my April 2024 blog “NIST CSF 2.0 brings Data Governance into the Light“.

Continue reading

Preliminary Data Taxonomy at ingestion. An opportunity for Computational Storage

Data governance has been on my mind a lot lately. With all the incessant talks and hype about Artificial Intelligence, the true value of AI comes from good data. Therefore, it is vital for any organization embarking on their AI journey to have good quality data. And the journey of the lifecycle of data in an organization starts at the point of ingestion, the data source of how data is either created, acquired to be presented up into the processing workflow and data pipelines for AI training and onwards to AI applications.

In biology, taxonomy is the scientific study and practice of naming, defining and classifying biological organisms based on shared characteristics.

And so, begins my argument of meshing these 3 topics together – data ingestion, data taxonomy and with Computational Storage. Here goes my storage punditry.

Data Taxonomy in post-injection 

I see that data, any data, has to arrive at a repository first before they are given meaning, context, specifications. These requirements are different from file permissions, ownerships, ctime and atime timestamps, the content of the ingested data stream are made to fit into the mould of the repository the data is written to. Metadata about the content of the data gives the data meaning, context and most importantly, value as it is used within the data lifecycle. However, the metadata tagging, and preparing the data in the ETL (extract load transform) or the ELT (extract load transform) process are only applied post-ingestion. This data preparation phase, in which data is enriched with content metadata, tagging, taxonomy and classification, is expensive, in term of resources, time and currency.

Elements of a modern event-driven architecture including data ingestion (Credit: Qlik)

Even in the burgeoning times of open table formats (Apache Iceberg, HUDI, Deltalake, et al), open big data file formats (Avro, Parquet) and open data formats (CSV, XML, JSON et.al), the format specifications with added context and meanings are added in and augmented post-injection.

Continue reading

Data Trust and Data Responsibility. Where we should be at before responsible AI.

Last week, there was a press release by Qlik™, informing of a sponsored TechTarget®‘s Enterprise Strategy Group (ESG) about the state of responsible AI practices across industries. The study highlighted critical gaps in the approach to responsible AI, ethical AI practices and AI regulatory compliances. From the study, Qlik™ emphasizes on having a solid data foundation. To get to that bedrock foundation, we must trust the data and we must be responsible for the kinds of data that built that foundation. Hence, Data Trust and Data Responsibility.

There is an AI boom right now. Last year alone, the AI machine and its hype added in USD$2.4 trillion market cap to US tech companies. 5 months into 2024, AI is still supernova hot. And many are very much fixated to the infallible fables and tales of AI’s pompous splendour. It is this blind faith that I see many users and vendors alike sidestepping the realities of AI in the present state as it is.

AI is not always responsible. Then it begs the question, “Are we really working with a responsible set of AI applications and ecosystems“?

Responsible AI. Are we there yet?

AI still hallucinates, unfortunately. The lack of transparency of AI applications coming to a conclusion and a recommended decision is not always known. What if you had a conversation with ChatGPT and it says that you are dead. Well, that was exactly what happened when Tom’s Guide writer, Tony Polanco, found out from ChatGPT that he passed away in September 2021.

Continue reading

Disaggregation and Composability vital for AI/DL models to scale

New generations of applications and workloads like AI/DL (Artificial Intelligence/Deep Learning), and HPC (High Performance Computing) are breaking the seams of entrenched storage infrastructure models and frameworks. We cannot continue to scale-up or scale-out the storage infrastructure to meet these inundating fluctuating I/O demands. It is time to look at another storage architecture type of infrastructure technology – Composable Infrastructure Architecture.

Infrastructure is changing. The previous staid infrastructure architecture parts of compute, network and storage have long been thrown of the window, precipitated by the rise of x86 server virtualization almost 20 years now. It triggered a tsunami of virtualizing everything, including storage virtualization, which eventually found a more current nomenclature – Software Defined Storage. Both storage virtualization and software defined storage (SDS) are similar and yet different and should be revered through different contexts and similar goals. This Tech Target article laid out both nicely.

As virtualization raged on, converged infrastructure (CI) which evolved into hyperconverged infrastructure (HCI) went fever pitch for a while. Companies like Maxta, Pivot3, Atlantis, are pretty much gone, with HPE® Simplivity and Cisco® Hyperflex occasionally blipped in my radar. In a market that matured very fast, HCI is now dominated by Nutanix™ and VMware®, with smaller Microsoft®, Dell EMC® following them.

From HCI, the attention of virtualization has shifted something more granular, more scalable in containerization. Despite a degree of complexity, containerization is taking agility and scalability to the next level. Kubernetes, Dockers are now mainstay nomenclature of infrastructure engineers and DevOps. So what is driving composable infrastructure? Have we reached the end of virtualization? Not really.

Evolution of infrastructure. Source: IDC

It is just that one part of the infrastructure landscape is changing. This new generation of AI/ML workloads are flipping the coin to the other side of virtualization. As we see the diagram above, IDC brought this mindset change to get us to Think Composability, the next phase of Infrastructure.

Continue reading

Societies in crisis. Data at Fault

The deluge of data is astounding. We get bombarded and attacked by data every single waking minute of our day. And it will get even worse. Our senses will be numbed into submission. In the end, I ask in the sense of it all. Do we need this much information force fed to us at every second of our lives?

We have heard about the societies a decade ago living in the Information Age and now, we have touted the Social Age. TikTok, Youtube, Twitter, Spotify, Facebook, Metaverse(s) and so many more are creating societies that are defined by data, controlled by data and governed by data. Data can be gathered so easily now that it is hard to make sense of what is relevant or what is useful. Even worse, private data, information about the individual is out there either roaming without any security guarding it, or sold like a gutted fish in the market. The bigger “whales” are peddled to the highest bidder. So, to the prudent human being, what will it be?

Whatever the ages we are in, Information or Social, does not matter anymore. Data is used to feed the masses; Data is used to influence the population; Data is the universal tool to shape the societies, droning into submission and ruling them to oblivion.

Societies burn

GIGO the TikTok edition

GIGO is Garbage In Garbage Out. It is an age old adage to folks who have worked with data and storage for a long time. You put in garbage data, you get garbage output results. And if you repeat the garbage in enough times, you would have created a long lasting garbage world. So, imagine now that the data is the garbage that is fed into the targeted society. What will happen next is very obvious. A garbage society.

Continue reading