From the past to the future

2019 beckons. The year 2018 is coming to a close and I look upon what I blogged in the past years to reflect what is the future.

The evolution of the Data Services Platform

Late 2017, I blogged about the Data Services Platform. Storage is no longer the storage infrastructure we know but has evolved to a platform where a plethora of data services are served. The changing face of storage is continually evolving as the IT industry changes. I take this opportunity to reflect what I wrote since I started blogging years ago, and look at the articles that are shaping up the landscape today and also some duds.

Some good ones …

One of the most memorable ones is about memory cloud. I wrote the article when Dell acquired a small company by the name of RNA Networks. I vividly recalled what was going through my mind when I wrote the blog. With the SAN, NAS and DAS, and even FAN (File Area Network) happening during that period, the first thing was the System Area Network, the original objective Infiniband and RDMA. I believed the final pool of where storage will be is the memory, hence I called it the “The Last Bastion – Memory“. RNA’s technology became part of Dell Fluid Architecture.

True enough, the present technology of Storage Class Memory and SNIA’s NVDIMM are along the memory cloud I espoused years ago.

What about Fibre Channel over Ethernet (FCoE)? It wasn’t a compelling enough technology for me when it came into the game. Reduced port and cable counts, and reduced power consumption were what the FCoE folks were pitching, but the cost of putting in the FC switches, the HBAs were just too great as an investment. In the end, we could see the cracks of the FCoE story, and I wrote the pre-mature eulogy of FCoE in my 2012 blog. I got some unsavoury comments writing that blog back then, but fast forward to the present, FCoE isn’t a force anymore.

Weeks ago, Amazon Web Services (AWS) just became a hybrid cloud service provider/vendor with the Outposts announcement. It didn’t surprise me but it may have shook the traditional systems integrators. I took the stance 2 years ago when AWS partnered with VMware and juxtaposed it to the philosophical quote in the 1993 Jurassic Park movie – “Life will not be contained, … Life finds a way“.

Continue reading

Sexy HPC storage is all the rage

HPC is sexy

There is no denying it. HPC is sexy. HPC Storage is just as sexy.

Looking at the latest buzz from Super Computing Conference 2018 which happened in Dallas 2 weeks ago, the number of storage related vendors participating was staggering. Panasas, Weka.io, Excelero, BeeGFS, are the ones that I know because I got friends posting their highlights. Then there are the perennial vendors like IBM, Dell, HPE, NetApp, Huawei, Supermicro, and so many more. A quick check on the SC18 website showed that there were 391 exhibitors on the floor.

And this is driven by the unrelentless demand for higher and higher performance of computing, and along with it, the demands for faster and faster storage performance. Commercialization of Artificial Intelligence (AI), Deep Learning (DL) and newer applications and workloads together with the traditional HPC workloads are driving these ever increasing requirements. However, most enterprise storage platforms were not designed to meet the demands of these new generation of applications and workloads, as many have been led to believe. Why so?

I had a couple of conversations with a few well known vendors around the topic of HPC Storage. And several responses thrown back were to put Flash and NVMe to solve the high demands of HPC storage performance. In my mind, these responses were too trivial, too irresponsible. So I wanted to write this blog to share my views on HPC storage, and not just about its performance.

The HPC lines are blurring

I picked up this video (below) a few days ago. It was insideHPC Rich Brueckner interview with Dr. Goh Eng Lim, HPE CTO and renowned HPC expert about the convergence of both traditional and commercial HPC applications and workloads.

I liked the conversation in the video because it addressed the 2 different approaches. And I welcomed Dr. Goh’s invitation to the Commercial HPC community to work with the Traditional HPC vendors to help push the envelope towards Exascale SuperComputing.

Continue reading

My first TechFieldDay

[Preamble: I have been invited by  GestaltIT as a delegate to their TechFieldDay from Oct 17-19, 2018 in the Silicon Valley USA. My expenses, travel and accommodation are paid by GestaltIT, the organizer and I was not obligated to blog or promote their technologies presented at this event. The content of this blog is of my own opinions and views]

I have attended a bunch of Storage Field Days over the years but I have never attended a Tech Field Day. This coming week, I will be attending their 17th edition, TechFieldDay 17, but my first. I have always enjoyed Storage Field Days. Everytime I joined as a delegate, there were new things to discover but almost always, serendipity happened.

Continue reading

Cohesity SpanFS – a foundational shift

[Preamble: I was a delegate of Storage Field Day 15 from Mar 7-9, 2018. My expenses, travel and accommodation were paid for by GestaltIT, the organizer and I was not obligated to blog or promote the technologies presented at this event. The content of this blog is of my own opinions and views]

Cohesity SpanFS impressed me. Their filesystem was designed from ground up to meet the demands of the voluminous cloud-scale data, and yes, the sheer magnitude of data everywhere needs to be managed.

We all know that primary data is always the more important piece of data landscape but there is a growing need to address the secondary data segment as well.

Like a floating iceberg, the piece that is sticking out is the more important primary data but the larger piece beneath the surface of the water, which is the secondary data, is becoming more valuable. Applications such as file shares, archiving, backup, test and development, and analytics and insights are maturing as the foundational data management frameworks and fast becoming the bedrock of businesses.

The ability of businesses to bounce back after a disaster; the relentless testing of large data sets to develop new competitive advantage for businesses; the affirmations and the insights of analyzing data to reduce risks in decision making; all these are the powerful back engine applicability that thrust businesses forward. Even the ability to search for the right information in a sea of data for regulatory and compliance reasons is part of the organization’s data management application.

Continue reading

Of Object Storage, Filesystems and Multi-Cloud

Data storage silos everywhere. The early clarion call was to eliminate IT data storage silos by moving to the cloud. Fast forward to the present. Data storage silos are still everywhere, but this time, they are in the clouds. I blogged about this.

Object Storage was all the rage when it first started. AWS, with its S3 (Simple Storage Service) offering, started the cloud storage frenzy. Highly available, globally distributed, simple to access, and fitted superbly into the entire AWS ecosystem. Quickly, a smorgasbord of S3-compatible, S3-like object-based storage emerged. OpenStack Swift, HDS HCP, EMC Atmos, Cleversafe (which became IBM SpectrumScale), Inktank Ceph (which became RedHat Ceph), Bycast (acquired by NetApp to be StorageGrid), Quantum Lattus, Amplidata, and many more. For a period of a few years prior, it looked to me that the popularity of object storage with an S3 compatible front has overtaken distributed file systems.

What’s not to like? Object storage are distributed, they are metadata rich (at a certain structural level), they are immutable (hence secure from a certain point of view), and some even claim self-healing (depending on data protection policies). But one thing that object storage rarely touted dominance was high performance I/O. There were some cases, but they were either fronted by a file system (eg. NFSv4.1 with pNFS extensions), or using some host-based, SAN-client agent (eg. StorNext or Intel Lustre). Object-based storage, in its native form, has not been positioned as high performance I/O storage.

A few weeks ago, I read an article from Storage Soup, Dave Raffo. When I read it, it felt oxymoronic. SwiftStack was just nominated as a visionary in the Gartner Magic Quadrant for Distributed File Systems and Object Storage. But according to Dave’s article, Swiftstack did not want to be “associated” with object storage that much, even though Swiftstack’s technology underpinning was all object storage. Strange.

Continue reading

DellEMC SC progressing well

[Preamble: I was a delegate of Storage Field Day 14. My expenses, travel and accommodation were paid for by GestaltIT, the organizer and I was not obligated to blog or promote the technologies presented at this event. The content of this blog is of my own opinions and views]

I haven’t had a preview of the Compellent technology for a long time. My buddies at Impact Business Solutions were the first to introduce the Compellent technology called Data Progression to the local Malaysian market and I was invited to a preview back then. Around the same time, I also recalled another rather similar preview invitation by PTC Singapore for the 3PAR technology called Adaptive Provisioning (it is called Adaptive Optimization now).

Storage tiering was on the rise in the 2009-2010 years. Both Compellent and 3PAR were neck and neck leading the conversation and mind share of storage tiering, and IBM easyTIER and EMC FAST (Fully Automated Storage Tiering) were nowhere to be seen or heard. Vividly, the Compellent Data Progression technology was much more elegant compared to the 3PAR technology. While both intelligent storage tiering technologies were equally good, I took that the 3PAR founders were ex-Sun Microsystems folks, and Unix folks sucked at UX. In this case, Compellent’s Data Progression was a definitely a leg up better than 3PAR.

History aside, this week I have the chance to get a new preview of the Compellent technology again. Compellent was now rebranded as the SC series and was positioned as the mid-range storage arrays of DellEMC. And together with the other Storage Field Day 14 delegates, I have the pleasure to experience the latest SC Data Progression technology update, as well their latest SC All-Flash.

In Data Progression, one interesting feature which caught my attention was the RAID Tiering. This was a dynamic auto expand and auto contract set of RAID tiersRAID 10 and RAID 5/6 in the Fast Tier and RAID 5/6 in the Lower Tier. RAID 10, RAID 5 and RAID 6 on the same set of drives (including SSDs), and depending on the “hotness” of the data, the location of the data blocks switched between the several RAID tiers in the Fast Tier. Over a longer period, the data blocks would relocate transparently to the Capacity Tier from the Fast Tier.

The Data Progression technology is extremely efficient. The movement of the data between the RAID Tiers and between the Performance/Capacity Tiers are in pages instead of blocks, making the write penalty and bandwidth to a negligible minimum.

The Storage Field Day 14 delegates were also privileged to be the first to get into the deep dive of the new All-Flash SC, just days of the announcement of the All-Flash SC. The All Flash SC redefines and refines the Data Progression to the next level. Among the new optimization, NAND Flash in the SC (both SLCs and MLCs, read-intensive and write-intensive) set the Data Progression default page size from 2MB to 512KB. These smaller 512KB pages enabled reduced bandwidth for tiering between the write-intensive and the read-intensive tier.

I didn’t get the latest SC family photos yet, but I managed to grab a screenshot of the announcement from The Register of the new DellEMC SC Series.

I was very encouraged with the DellEMC Midrange Storage presentation. Besides giving us a fantastic deep dive about the DellEMC SC All-Flash Storage, I was also very impressed by the candid and straightforward attitude of the team, led by their VP of Product Management, Pierluca Chiodelli. An EMC veteran, he was taking up the hard questions onslaught by the SFD14 delegate like a pro. His team’s demeanour was critical in instilling confidence and trust in how the bloggers and the analysts viewed Dell EMC merger, and how the SC and the Unity series would pan out in the technology roadmap.

Unlike the fiasco I went through with the DellEMC Forum 2017 in Malaysia, where I was disturbed with 3 calls in 3 consecutive days by DellEMC Malaysia, I was left with a profound respect for this DellEMC Storage team. They strongly supported their position within the DellEMC storage universe, and imparted their confidence in their technology solution in the marketplace.

Without a doubt, in my point of view, this DellEMC Mid-Range Storage team was the best I have enjoyed in Storage Field Day 14. Thank you.

The rise of RDMA

I have known of RDMA (Remote Direct Memory Access) for quite some time, but never in depth. But since my contract work ended last week, and I have some time off to do some personal development, I decided to look deeper into RDMA. Why RDMA?

In the past 1 year or so, RDMA has been appearing in my radar very frequently, and rightly so. The speedy development and adoption of NVMe (Non-Volatile Memory Express) have pushed All Flash Arrays into the next level. This pushes the I/O and the throughput performance bottlenecks away from the NVMe storage medium into the legacy world of SCSI.

Most network storage interfaces and protocols like SAS, SATA, iSCSI, Fibre Channel today still carry SCSI loads and would have to translate between NVMe and SCSI. NVMe-to-SCSI bridges have to be present to facilitate the translation.

In the slide below, shared at the Flash Memory Summit, there were numerous red boxes which laid out the SCSI connections and interfaces where SCSI-to-NVMe translation (and vice versa) would be required.

Continue reading