Praying to the hypervisor God

I was reading a great article by Frank Denneman about storage intelligence moving up the stack. It was pretty much in line with what I have been observing in the past 18 months or so, about the storage pendulum having swung back to DAS (direct attached storage). To be more precise, the DAS form factor I am referring to are physical server hardware that houses many disk drives.

Like it or not, the hypervisor has become the center of the universe in the IT space. VMware has become the indomitable force in the hypervisor technology, with Microsoft Hyper-V playing catch-up. The seismic shift of these 2 hypervisor technologies are leading storage vendors to place them on to the altar and revering them as deities. The others, with the likes of Xen and KVM, and to lesser extent Solaris Containers aren’t really worth mentioning.

This shift, as the pendulum swings from networked storage back to internal “direct-attached” storage are dictated by 4 main technology factors:

  • The x86 server architecture
  • Software-defined
  • Scale-out architecture
  • Flash-based storage technology

Anyone remember Thumper? Not the Disney character from the Bambi movie!

thumper-bambi-cartoon-character

When the SunFire X4500 (aka Thumper) was first released in (intermission: checking Wiki for the right year) in 2006, I felt that significant wound inflicted in the networked storage industry. Instead of the usual 4-8 hard disk drives in the all the industry servers at the time, the X4500 4U chassis housed 48 hard disk drives. The design and architecture were so astounding to me, I even went and bought a 1U SunFire X4150 for my personal server collection. Such was my adoration for Sun’s technology at the time.

Continue reading

Technology prowess of Riverbed SteelFusion

The Riverbed SteelFusion (aka Granite) impressed me the moment it was introduced to me 2 years ago. I remembered that genius light bulb moment well, in December 2012 to be exact, and it had left its mark on me. Like I said last week in my previous blog, the SteelFusion technology is unique in the industry so far and has differentiated itself from its WAN optimization competitors.

To further understand the ability of Riverbed SteelFusion, a deeper inspection of the technology is essential. I am fortunate to be given the opportunity to learn more about SteelFusion’s technology and here I am, sharing what I have learned.

What does the technology of SteelFusion do?

Riverbed SteelFusion takes SAN volumes from supported storage vendors in the central datacenter and projects the storage volumes (aka LUNs)to applications and hosts at the remote branches. The technology requires a paired relationship between SteelFusion Core (in the centralized datacenter) and SteelFusion Edge (at the branch). Both SteelFusion Core and Edge are fronted respectively by the Riverbed SteelHead WAN optimization device, to deliver the performance required.

The diagram below gives an overview of how the entire SteelFusion network architecture is like:

Riverbed SteelFusion Overall Solution 2 Continue reading

Convergence data strategy should not forget the branches

The word “CONVERGENCE” is boiling over as the IT industry goes gaga over darlings like Simplivity and Nutanix, and the hyper-convergence market. Yet, if we take a step back and remove our emotional attachment from the frenzy, we realize that the application and implementation of hyper-convergence technologies forgot one crucial elementThe other people and the other offices!

ROBOs (remote offices branch offices) are part of the organization, and often they are given the shorter end of the straw. ROBOs are like the family’s black sheeps. You know they are there but there is little mention of them most of the time.

Of course, through the decades, there are efforts to consolidate the organization’s circle to include ROBOs but somehow, technology was lacking. FTP used to be a popular but crude technology that binds the branch offices and the headquarter’s operations and data services. FTP is still used today, in countries where network bandwidth costs a premium. Data cloud services are beginning to appear of part of the organization’s outreaching strategy to include ROBOs but the fear of security weaknesses, data breaches and misuses is always there. Often, concerns of the weaknesses of the cloud overcome whatever bold strategies concocted and designed.

For those organizations in between, WAN acceleration/optimization techonolgy is another option. Companies like Riverbed, Silverpeak, F5 and Ipanema have addressed the ROBOs data strategy market well several years ago, but the demand for greater data consolidation and centralization, tighter and more effective data management and data control to meet the data compliance and data governance requirements, has grown much more sophisticated and advanced. Continue reading

The Prophet has arrived

Early last week, I had a catch up with my friend. He was excited to share with me the new company he just joined. It was ProphetStor. It was a catchy name and after our conversation, I have decided to spend a bit of my weekend afternoon finding out more about the company and its technology.

From another friend at FalconStor, I knew of this company several months ago. Ex-FalconStor executives have ventured to found ProphetStor as the next generation of storage resource orchestration engine. And it has found a very interesting tack to differentiate from the many would-bes of so-called “software-defined storage” leaders. ProphetStor made their early appearance at the OpenStack Summit in Hong Kong back in November last year, positioning several key technologies including OpenStack Cinder, SNIA CDMI (Cloud Data Management Interface) and SMI-S (Storage Management Initiative Specification) to provide federation of storage resources discovery, provisioning and automation. 

The federation of storage resources and services solution is aptly called ProphetStor Federator. The diagram I picked up from the El Reg article presents the Federator working with different OpenStack initiatives quite nicely below:  There are 3 things that attracted me to the uniqueness of ProphetStor.

1. The underlying storage resources, be it files, objects, or blocks, can be presented and exposed as Cinder-style volumes.

2. The ability to define the different performance capabilities and SLAs (IOPS, throughput and latency) from the underlying storage resources and matching them to the right application requirements.

3. The use of SNIA of SMI-S and CDMI Needless to say that the Federator software will abstract the physical and logical structures of any storage brands or storage architectures, giving it a very strong validation of the “software-defined storage (SDS)” concept.

While the SDS definition is still being moulded in the marketplace (and I know that SNIA already has a draft SDS paper out), the ProphetStor SDS concept does indeed look similar to the route taken by EMC ViPR. The use of the control plane (ProphetStor Federator) and the data plane (underlying physical and logical storage resource) is obvious.

I wrote about ViPR many moons ago in my blog and I see ProphetStor as another hat in the SDS ring. I grabbed the screenshot (below) from the ProphetStor website which I thought did beautifully explained what ProphetStor is from 10,000 feet view.

ProphetStor How it works

The Cinder-style volume is a class move. It preserves the sanctity of many enterprise applications which still need block storage volumes but now it comes with a twist. These block storage volumes now will have different capability and performance profiles, tagged with the relevant classifications and SLAs.

And this is where SNIA SMI-S discovery component is critical because SMI-S mines these storage characteristics and presents them to the ProphetStor Federator for storage resource classification. For storage vendors that do not have SMI-S support, ProphetStor can customize the relevant interfaces to the proprietary API to discover the storage characteristics.

On the north-end, SNIA CDMI works with the ProphetStor Federator’s Offer & Provisioning functions to bundle wrap various storage resources for the cloud and other traditional storage network architectures.

I have asked my friend for more technology deep-dive materials (he has yet to reply me) of ProphetStor to ascertain what I have just wrote. (Simon, you have to respond to me!)

This is indeed very exciting times knowing ProphetStor as one of the early leaders in the SDS space. And I like to see ProphetStor go far with this.

Now let us pray … because the prophet has arrived.

Has Object Storage become the everything store?

I picked up a copy of latest Brad Stone’s book, “The Everything Store: Jeff Bezos and the Age of Amazon at the airport on my way to Beijing last Saturday. I have been reading it my whole time I have been in Beijing, reading in awe about the turbulent ups and downs of Amazon.com.

The Everything Store cover

In its own serendipitous ways, Object-based Storage Devices (OSDs) have been floating in my universe in the past few weeks. Seems like OSDs have been getting a lot of coverage lately and suddenly, while in the shower, I just had an epiphany!

Are storage vendors now positioning Object-based Storage Devices (OSDs) as Everything Store?

Continue reading

Washing too much software defined

There’s been practically a firestorm when EMC announced ViPR, its own version of “software-defined storage” at EMC World last week. Whether you want to call it Virtualization Platform Re-defined or Re-imagined, competitors such as NetApp, HDS, Nexenta have taken pot-shots at EMC, and touting their own version of software-defined storage.

In the release announcement, EMC claimed the following (a cut-&-paste from the announcement):

  • The EMC ViPR Software-Defined Storage Platform uniquely provides the ability to both manage storage infrastructure (Control Plane) and the data residing within that infrastructure (Data Plane).
  • The EMC ViPR Controller leverages existing storage infrastructures for traditional workloads, but provisions new ViPR Object Data Services (with access via Amazon S3 or HDFS APIs) for next-generation workloads. ViPR Object Data Services integrate with OpenStack via Swift and can be run against enterprise or commodity storage.
  • EMC ViPR integrates tightly with VMware’s Software Defined Data Center through industry standard APIs and interoperates with Microsoft and OpenStack.

The separation of the Control Plane and the Data Plane of the ViPR allows the abstraction of 2 main layers.

Layer 1 is the abstraction of the underlying storage hardware infrastructure. Although I don’t have the full details (EMC guys please enlighten me, please!), I believe storage administrator no longer need to carve out LUNs from RAID groups or Storage Pools, striped and sliced them and further provision them into meta file systems before they are exported or shared through NAS protocols. I am , of course, quoting the underlying provisioning architecture of Celerra, which can be quite complex. Anyone who has done manual provisioning with Celerra Manager should know what I mean.

Here’s the provisioning architecture of Celerra:

Continue reading

The big boys better be flash friendly

An interesting article came up in the news this week. The article, from the ever popular The Register, mentioned 3 up and rising storage stars, Nimble Storage, Tintri and Tegile, and their assault on a flash strategy “blind spot” of the big boys, notably EMC and NetApp.

I have known about Nimble Storage and Tintri for a couple of years now, and I did take some time to read up on their storage technology offering. Tegile is new to me when it appeared on my radar after SearchStorage.com announced as the Gold Winner of the enterprise storage category for 2012.

The Register article intriqued me because it implied that these traditional storage vendors such as EMC and NetApp are probably doing a “band-aid” when putting together their flash storage strategy. And typically, I see these strategic concepts introduced by these 2 vendors:

  1. Have a server-side cache strategy by putting a PCIe card on the hosting server
  2. Have a network-based all-flash caching area
  3. Have a PCIe-based flash card on the storage system
  4. Have solid state drives (SSDs) in its disk shelves enclosures

In (1), EMC has VFCache (the server side caching software has been renamed to XtremSW Cache and under repackaging with the Xtrem brand name) and NetApp has it FlashAccel solution. Previously, as I was informed, FlashAccel was using the FusionIO ioTurbine solution but just days ago, NetApp expanded the LSI Nytro WarpDrive into its FlashAccel solution as well. The main objective of a server-side caching strategy using flash is to accelerate mostly read-based I/O operations for specific application workloads at the server side.

Continue reading

Time for Fujitsu Malaysia to twist and shout and yet …

The worldwide storage market is going through unprecedented change as it is making baby steps out of one of the longest recessions in history. We are not exactly out of the woods yet, given the Eurozone crisis, slowing growth in China and the little sputters in the US economy.

Back in early 2012, Fujitsu has shown good signs of taking market share in the enterprise storage but what happened to that? In the last 2 quarters, the server boys in the likes of HP, IBM and Dell storage market share have either shrunk (in the case of HP and Dell) or tanked (as in IBM). I would have expected Fujitsu to continue its impressive run and continue to capture more of the enterprise market, and yet it didn’t. Why?

I was given an Eternus storage technology update by the Fujitsu Malaysia pre-sales team more than a year ago. It has made some significant gains in technology such as Advanced Copy, Remote Copy, Thin Provisioning, and Eco-Mode, but I was unimpressed. The technology features were more like a follower, since every other storage vendor in town already has those features.

Continue reading

VMware in step 1 breaking big 6 hegemony

Happy Lunar New Year! This is the Year of the Water Snake, which just commenced 3 days ago.

I have always maintain that VMware has to power to become a storage killer. I mentioned that it was a silent storage killer in my blog post many moons ago.

And this week, VMware is not so silent anymore. Earlier this week, VMware had just acquired Virsto, a storage hypervisor technology company. News of the acquisition are plentiful on the web and can be found here and here. VMware is seriously pursuing its “Software-Defined Data Center (SDDC)” agenda and having completed its software-defined networking component with the acquisition of Nicira back in July 2012, the acquisition of Virsto represents another bedrock component of SDDC, software-defined storage.

Who is Virsto and what do they do? Well, in a nutshell, they abstract the underlying storage architecture and presents a single, global namespace for storage, a big storage pool for VM datastores. I got to know about their presence last year, when I was researching on the topic of storage virtualization.

I was looking at Datacore first, because I was familiar with Datacore. I got to know Roni Putra, Datacore’s CTO, through a mutual friend, when he was back in Malaysia. There was a sense of pride knowing that Roni is a Malaysian. That was back in 2004. But Datacore isn’t the only player in the game, because the market is teeming with folks like Tintri, Nutanix, IBM, HDS and many more. It just so happens that Virsto has caught the eye of VMware as it embarks its first high-profile step (the one that VMware actually steps on the toes of the Storage Big 6 literally) into the storage game. The Big 6 are EMC, NetApp, IBM, HP, HDS and Dell (maybe I should include Fujitsu as well, since it has been taking market share of late)

Virsto installs as a VSA (virtual storage appliance) into ESXi, and in version 2.0, it plugs right in as an almost-native feature of ESXi, not a vCenter tab like most other storage. It looks and feels very much like a vSphere functionality and this blurs the lines of storage and VM management. To the vSphere administrator, the only time it needs to be involved in storage administration is when he/she is provisioning storage or expanding it. Those are the only 2 common “touch-points” that a vSphere administrator has to deal with storage. This, therefore, simplifies the administration and management job.

Here’s a look at the Virsto Storage Hypervisor architecture (credits to Google Images):

What Virsto does, as I understand from high-level, is to take any commodity storage and provides a virtual storage layer and consolidate them into a very large storage pool. The storage pool is called vSpace (previously known as LiveSpace?) and “allocates” Virsto vDisks to each VMs. Each Visto vDisk will look like a native zeroed thick VMDK, with the space efficiency of Linked Clones, but without the performance penalty of provisioning them.  The Virsto vDisks are presented as NFS exports to each VM.

Another important component is the asynchronous write to Virsto vLogs. This is configured at the deployment stage, and this is basically a software-based write cache, quickly acknowledging all writes for write optimization and in the background, asynchronously de-staged to the vSpace. Obviously it will have its own “secret sauce” to optimize the writes.

Within the vSpace, as disk clone groups internal to the Virsto, storage related features such as tiering, thin provisioning, cloning and snapshots are part and parcel of it. Other strong features of Virsto are its workflow wizard in storage provisioning, and its intuitive built-in performance and management console.

As with most technology acquisitions, the company will eventually come to a fork where they have to decide which way to go. VMware has experienced it before with its Nicira acquisition. It had to decide between VxLAN (an IETF standard popularized by Cisco) or Nicira’s own STT (Stateless Transport Tunneling). There is no clear winner because choosing one over the other will have its rewards and losses.

Likewise, the Virsto acquisition will have to be packaged in a friendly manner by VMware. It does not want to step on all toes of its storage Big 6 partners (yet). It still has to abide to some industry “co-opetition” game rules but it has started the ball rolling.

And I see that 2 critical disruptive points about this acquisition in this:

  1. It has endorsed the software-defined storage/storage hypervisor/storage virtualization technology and started the commodity storage hardware technology wave. This could the beginning of the end of proprietary storage hardware. This is also helped by other factors such as the Open Compute Project by Facebook. Read my blog post here.
  2. It is pushing VMware into a monopoly ala-Microsoft of the yesteryear. But this time around, Microsoft Hyper-V could be the benefactor of the VMware agenda. No wonder VMware needs to restructure and streamline its business. News of VMware laying off about 900 staff can be read here. Its unfavourable news of its shares going down can be read here.

I am sure the Storage Big 6 is on the alert and is probably already building other technology and partnerships beyond VMware. It the natural thing to do but there is no stopping VMware if it wants to step on the Big 6 toes now!

Storage Facebook likes

There is a mini revolution going on, and Facebook is the main force driving it.

It is the Open Compute Project (OCP), and its mission is to redesign the modern-day data centers and drive open hardware and architectural designs and specifications, including storage. The overall goals are to drive greater data center efficiency, flexibility, energy savings and cost effectiveness in a new class of “hyperscale” datacenters. Facebook, Google and Amazon are some of the examples of hyperscale datacenters, where their businesses relies on massive computing power, exponential storage performance and racks and racks of computing infrastructure to drive their web-computing or cloud-computing services.

Some of the cool technology innovations in mind includes having systems that support any CPUs from any vendors including Intel and AMD. We may even see both processor brands running on the same motherboard. The Open Common Slots component for processors is based on PCIe. Intel has pledged their Decathlete motherboard specifications for OCP and likewise AMD has produced its Roadrunner mobo series specification for the project as well. The ARM processor could also be supported in the near future in this “mix-and-match” OCP ideals.

Other proposed changes include OpenRack specifications, “sleds”, and of course, the Open Vault project for storage (aka “Knox”). Continue reading