I am on a learning streak again. The most prominent technology that keeps landing on my tray at present is, of course, Artificial Intelligence (AI).
AI is hot. Very hot. And overhyped. Everyone is an expert nowadays. Yeah, right. Not me.
Underneath that glossy veneer of the AI hype, there are much going on behind the scenes to make AI great. The 2 areas I have been involved in and practiced for a long time are data infrastructure a.k.a. storage, and data management. And both are playing prominent parts in the advancement of the AI ecosystem. This makes me very excited.
I am no expert, but learning from various sources is already telling me that AI is pushing both storage and data management harder than ever before, much harder than traditional enterprise on-premises use cases and even the cloud computing applications. I ask myself, “where do I start my learning again?” as I journal my process.
Storage performance in a Data Pipeline
Speed of how AI responds is Trust. The faster it is to the accurate and relevant responses will build trust in AI. To get to the speed that we want is not an easy thing, and storage a.k.a. data infrastructure is doing its part. I pick up my learning from understanding the AI pipeline. One early help comes from my friend, Gina Rosenthal, who attended the Solidigm‘s presentation at AI Field Day in February 2024. Her article, titled “Why storage matters for AI – Solidigm“, kickstarted my learning juices again.
I was particularly captured by this slide in Gina’s article. It defines the laborious path data takes to become useful for AI applications.
Storage and the 5 stages of AI Work (reference: Solidigm presentation on AI Field Day)
In the past weekend, I watched a CNA Insider video delving into Data Theft in Malaysia. It is titled “Data Theft in Malaysia: How your personal information may be exploited | Cyber Scammed”.
You can watch the 45-minute video below.
Such dire news is nothing new. We Malaysians are numbed to those telemarketers calling and messaging to offer their credit card services, loans, health spa services. You name it; there is something to sell. Of course, these “services” are mostly innocuous, but in recent years, the forms of scams are risen up several notches and severity levels. The levels of sophistication, the impacts, and the damages (counting financial and human casualties) have rocketed exponentially. Along with the news, mainstream and others, the levels of awareness and interests in data, especially PII (personal identifiable information) in Malaysians, are at its highest yet.
Deduplication in OpenZFS has been a bugbear for some years now. As data sets get larger, they have become even more difficult in using the present DeDuplication Table (DDT) method. Deduplication in OpenZFS is often derided as overwhelming and sluggish in performance.
Moreover, there is a common folklore passed on and on about allocating 5GB of RAM for every 1TB to dedupe in OpenZFS. I don’t know where this “sizing” came about. Probably derived from something Jeff Bonwickwrote back in the early days of ZFS. But there is some truth to this “rule of thumb”, commonly passed around in the TrueNAS® circles.
Nevertheless, given the exponential growth of data, and the advancement of processing power in modern day computer systems, the OpenZFS development community has decided to revamp the DDT method. Several prominent luminaries from iXsystems™, Klara Systems and the OpenZFS community have got together in mid-2023 to develop FDT or Fast Dedupe Table. And we got to see FDT announced to the world in the most recent OpenZFS Developer Summit in November 2023.
Fast Dedupe Table (FDT)
Fast Dedupe Table (FDT) is a log-based dedupe. In OpenZFS, all the write block I/Os that come into OpenZFS are coalesced into transaction groups (TXGs), hashed and checksummed, before they are committed to persistent media.
The new implementation in FDT is to put these incoming TXGs checksums and hashes into an append-only log structure in persistent storage, and also tracking the hashed changes in an AVL-tree residing in the memory. An AVL tree is a self-balancing binary search tree structure that is very efficient in searching, thus giving FDT the speed in initiating the deduplication lookups and updates.
OpenZFS Fast Dedupe Table (FDT) in a nutshell
The append-only log structure works hand-in-hand with the AVL tree to accept and stage (including intelligent sorting) the hash entries that are coming in after the TXGs writes. Then at a certain marker, that could be at a particular time-based trigger or a high-water mark, then the entries in the logs and AVL tree are flushed to the ZAP (ZFS Attribute Processor) where the actual full map of the OpenZFS blocks reside.
Somewhere, there is a misconception that data processing is cheap. That stems from the well-known pricings of the capacities of public cloud storage that are a fraction of cents per month. But data in storage has to be worked upon, and has to be built up and protected to increase its value. Data has to be processed, moved, shared, and used by applications. Data induce workloads. Nobody keeps data stored forever and never be used again. Nobody buys storage just for capacity alone.
We have a great saying in the industry. No matter, where the data moves, it will land in a storage. So, it is clear that data does not exist in ether. And yet, I often see how little attention and prudence and care, when it comes to data infrastructure and data management technologies, the very components that are foundational to great data.
Great data management for Great AI
AI is driving up costs in data processing
A few recent articles drew my focus into the cost of data processing.
A few weeks ago, I decided to wipe clean my entire lab setup running Proxmox 6.2. I wanted to connect the latest version of Proxmox VE 8.0-2 using iSCSI LUNs from the TrueNAS® system I have with me. I thought it would be fun to have the configuration steps and the process documented. This is my journal on how to provision a TrueNAS® CORE iSCSI LUN to Proxmox storage. This iSCSI volume in Proxmox is where the VMs will be installed into.
Here is a simplified network diagram of my setup but it will be expanded to a Proxmox cluster in the future with the shared storage.
Proxmox and TrueNAS network setup
Preparing the iSCSI LUN provisioning
The iSCSI LUN (logical unit number) is provisioned as a logical disk volume to the Proxmox node, where the initiator-target relationship and connection are established.
This part assumes that a zvol has been created from the zpool. At the same time, the IQN (iSCSI Qualified Name) should be known to the TrueNAS® storage as it establishes the connection between Proxmox (iSCSI initiator) and TrueNAS (iSCSI target).
The IQN for Proxmox can be found by viewing the content of the /etc/iscsi/initiatorname.iscsi within the Proxmox shell as shown in the screenshot below.
Where to find the Proxmox iSCSI IQN
The green box shows the IQN number of the Proxmox node that starts with iqn.year-month.com.domain:generated-hostname. This will be used during the iSCSI target portal configuration in the TrueNAS® webGUI.
I was listening to several storage luminaries in the GestaltIT’s podcast “No one understands Storage anymore” a few of weeks ago. Around the minute of 11.09 in the podcast, Dr. J. Metz, SNIA® Chair, brought up this is powerful quote “Storage does not mean Capacity“. It struck me, not in a funny way. It is what it is, and it something I wanted to say to many who do not understand the storage solutions they are purchasing. It exemplifies what is wrong in the many organizations today in their understanding of investing in a storage infrastructure project.
This is my pet peeve. The first words uttered in most, if not all storage requirements in my line of work are, “I want this many Terabytes of storage“. There are no other details and context of what the other requirement factors are, such as availability, performance, future growth, etc. Or even the goals to achieve when purchasing a storage system and operating it. What is the improvement they are looking for?What are the problems to solve?
Where is the OKR?
It pains me to say this. For the folks who have in the IT industry for years, both end users and IT purveyors alike, most are absolutely clueless about OKR (Objectives and Key Results) for their storage infrastructure project. Many cannot frame the data challenges they are facing, and they have no idea where to go next. There is no alignment. There is no strategy. Even worse, there is no concept of how their storage infrastructure investments will improve their business and operations.
Just the other day, one company director from a renown IT integrator here in Malaysia came calling. He has been in the IT industry since 1989 (I checked his Linkedin profile), asking to for a 100TB storage quote. I asked a few questions about availability, performance, scalability; the usual questions a regular IT guy would ask. He has no idea, and instead of telling me he didn’t know, he gave me a runaround of this and that. Plenty of yada, yada nonsense.
In the end, I told him to buy a consumer grade storage appliance from Taiwan. I will just let him make a fool of himself in front of his customer since he didn’t want to take accountability of ensuring his customer get a proper enterprise storage solution in good faith. His customer is probably in the same mould as well.
Defensive Strategies as Data Foundations
A strong storage infrastructure foundation is vital for good Data Credibility. If you do the right things for your data, there is Data Value, and it will serve your business well. Both Data Credibility and Data Value create confidence. And Confidence equates Trust.
In order to create the defensive strategies let’s look at storage Availability, Protection, Accessibility, Management Security and Compliance. These are 6 of the 8 data points of the A.P.P.A.R.M.S.C. framework.
Offensive Strategies as Competitive Advantage
Once we have achieved stability of the storage infrastructure foundation, then we can turn over and drive towards storage Performance, Recovery, plus things like Scalability and Agility.
With a strong data infrastructure foundation, the organization can embark on the offensive, and begin their business transformation journey, knowing that their data is well run, protection, and performs.
Alignment with Data and Business Goals
Why are the defensive and offensive strategies requiring alignment to business goals?
The fact is simple. It is about improving the business and operations, and setting OKRs is key to measure the ROI (return of investment) of getting the storage systems and the solutions in place. It is about switching the cost-fearing (negative) mindset to a profit-conviction (positive) mindset.
For example, maybe the availability of the data to the business is poor. Maybe there is the need to have access to the data 24×7, because the business is going online. The simple measurable fact is we can move availability from 95% uptime to 99.99% uptime with an HA storage system.
Perhaps there are concerns about recoverability in the deluge of ransomware threats. Setting new RPO goals from 24 hours to 4 hours is a measurable objective to enhance data resiliency.
Or getting the storage systems to deliver higher performance from 350 IOPS to 5000 IOPS for the database.
What I am saying here is these data points are measurable, and they can serve as checkpoints for business and operational improvements. From a management perspective, these can be used as KPI (key performance index) to define continuous improvement of Data Confidence.
Furthermore, it is easy when a OKR dashboard is used to map the improvement markers when organizations use storage to move from point A to point B, where B equates to a new success milestone. The alignment sets the paths to the business targets.
Storage does not mean only Capacity
The sad part is what the OKRs and the measured goals alignments are glaringly missing in the minds of many organizations purchasing a storage infrastructure and data management solution. The people tasked to source a storage technology solution are not placing a set of goals and objectives. Capacity appears to be the only thing on their mind.
I am about to meet a procurement officer of a customer soon. She asked me this question “Why is your storage so expensive?” over email. I want to change her mindset, just like the many officers and C-levels who hold the purse strings.
Let’s frame the use storage infrastructure in the real world. Nobody buys a storage system just to keep data in there much like a puddle keeps stagnant water. Sooner or later the value of the data in the storage evaporates or the value becomes dull if the data is not used well in any ways, shape or form.
Storage systems and the interconnected pathways from on premises, to the next premises, to the edge and to the clouds serve the greater good for Data. Data is used, shared, shaped, improved, enhanced, protected, moved, and more to deliver Value to the Business.
Storage capacity is just one of the few factors to consider when investing in a storage infrastructure solution. In fact, capacity is probably the least important piece when considering a storage solution to achieve the company’s OKRs. If we think about it deeper, setting the foundation for Data in the defensive manner will help elevate value of the data to be promoted with the offensive strategies to gain the competitive advantage.
Storage infrastructure and storage solutions along with data management platforms may appear to be a cost to the annual budgets. If you know set the OKRs, define A to get to B, alignment the goals, storage infrastructure and the data management platforms and practices are investments that are worth their weight in gold. That is my guarantee.
On the flip side, ignoring and avoiding OKRs, and set the strategies without prudence will yield its comeuppance. Technical debts will prevail.
One of the best features I have been waiting for is dRAID or distributed RAID. I have written about it dRAID a couple of years back. It was announced in 2021, in OpenZFS 2.1, but we have not seen an commercial implementation of dRAID … until iXsystems™ TrueNAS® SCALE 23.10. Why am I so excited?
I have followed the technology since Isaac Huang presented dRAID at the OpenZFS Summit in 2015. Through the years ahead, I have seen Isaac presenting dRAID at the summits, and with each iteration, dRAID got closer and closer to be developed into OpenZFS. It was not until 2021, in OpenZFS 2.1 when dRAID became part of filesystem. And now, dRAID is finally in the TrueNAS® SCALE offering.
Knowing RAID resilvering
RAID rebuilding or reconstruction is a painful and potentially risky process. In OpenZFS and ZFS speak, this process is called resilvering. In simple laymen terms, when a drive (or drives) failed in a parity-based RAID volume (eg. RAID-Z1 or RAID-Z2 vdev), the data which was previously in the failed drive is recreated in the newly integrated spare drive. The structural integrity of the RAID volume (and the storage pool) is preserved but the data that was lost is painstakingly remade through the mathematical algorithm of the parity function of the RAID volume.
When hard disk drives were small in capacity like 2TB or less, the RAID resilvering process was probably faster to complete, returning the parity RAID volume to a normal, online state. But today, drives are 22TB and higher, leaving the traditional RAID resilvering process to take days and even weeks. This leads the RAID volume vulnerable to another possible drive failure, weakening the integrity of the RAID volume. Even worse, most of modern day storage arrays have many disk drives, into the thousands even. And yes, solid state drives would probably be faster in the resilvering, but the same mechanics pretty much apply in OpenZFS.
At the same time, the spare drives are assigned physically and designated to the OpenZFS storage pool, and are not part of the vdev until the resilvering process kicks in.
Yes, this is pretty much a physical process that takes time, computing resources and patience. Note the operative word of “physical” here.
dRAID resilvering
dRAID speeds up the RAID resilvering process several folds, returning the RAID volume (or vdev) much faster than traditional OpenZFS RAID resilvering process. It uses a logical (as opposed to physical) RAID layout concept and uses “logical spare drives”. Thus, there will be many spares “blocks” distributed across the entire dRAID zpool, as shown in the diagram below.
There was a Super Blue Moon a few days ago. It was a rare sky show. Friends of mine who are photo and moon gazing enthusiasts were showing off their digital captures online. One ignorant friend, who was probably a bit envious of the other people’s attention, quipped that his Oppo Reno 10 Pro Plus can take better pictures. Oppo Reno 10 Pro Plus claims 3x optical zoom and 120x digital zoom. Yes, 120 times!
Yesterday, a WIRED article came out titled “How Much Detail of the Moon Can Your Smartphone Really Capture?” It was a very technical article. I thought the author did an excellent job explaining the physics behind his notes. But I also found the article funny, flippant even, when I juxtaposed this WIRED article to what my envious friend was saying the other day about his phone’s camera.
Super Blue Moon 2023
Open Source storage expectations and outcomes
I work for iXsystems™. Open Source has been its DNA for over 30 years. Similarly, I have also worked on Open Source (decades before it was called open source) in my home labs ever since I entered the industry. I had SoftLanding Linux System 3.5″ diskette (Linux kernel 0.99), and I bought a boxed set of FreeBSD OS from Walnut Creek (photo below). My motivation was to learn as much as possible about information technology world because I was making my first steps into building my career (I was also quietly trying to prove my father wrong) in the IT industry.
FreeBSD Boxed Set (circa 1993)
Open source has democratized technology. It has placed the power of very innovative technology into the hands of the common people With Open Source, I see the IT landscape changing as well, especially for home labers like myself in the early years. Social media platforms, FAANG (Facebook, Apple, Amazon, Netflix, Google), etc, etc, have amplified that power (to the people). But with that great power, comes great responsibility. And some users with little technology background start to have hallucinated expectations and outcomes. Just like my friend with the “powerful” Oppo phone.
Likewise, in my world, I have plenty of anecdotes of these types of open source storage users having wild expectations, but little skills to exact the reality.
New generations of applications and workloads like AI/DL (Artificial Intelligence/Deep Learning), and HPC (High Performance Computing) are breaking the seams of entrenched storage infrastructure models and frameworks. We cannot continue to scale-up or scale-out the storage infrastructure to meet these inundating fluctuating I/O demands. It is time to look at another storage architecture type of infrastructure technology – Composable Infrastructure Architecture.
Infrastructure is changing. The previous staid infrastructure architecture parts of compute, network and storage have long been thrown of the window, precipitated by the rise of x86 server virtualization almost 20 years now. It triggered a tsunami of virtualizing everything, including storage virtualization, which eventually found a more current nomenclature – Software Defined Storage. Both storage virtualization and software defined storage (SDS) are similar and yet different and should be revered through different contexts and similar goals. This Tech Target article laid out both nicely.
As virtualization raged on, converged infrastructure (CI) which evolved into hyperconverged infrastructure (HCI) went fever pitch for a while. Companies like Maxta, Pivot3, Atlantis, are pretty much gone, with HPE® Simplivity and Cisco® Hyperflex occasionally blipped in my radar. In a market that matured very fast, HCI is now dominated by Nutanix™ and VMware®, with smaller Microsoft®, Dell EMC® following them.
From HCI, the attention of virtualization has shifted something more granular, more scalable in containerization. Despite a degree of complexity, containerization is taking agility and scalability to the next level. Kubernetes, Dockers are now mainstay nomenclature of infrastructure engineers and DevOps. So what is driving composable infrastructure? Have we reached the end of virtualization? Not really.
Evolution of infrastructure. Source: IDC
It is just that one part of the infrastructure landscape is changing. This new generation of AI/ML workloads are flipping the coin to the other side of virtualization. As we see the diagram above, IDC brought this mindset change to get us to Think Composability, the next phase of Infrastructure.
On the road, seat belt saves lives. So does the motorcycle helmet. But these 2 technologies alone are probably not well received and well applied daily unless there is a strong ecosystem and culture about road safety. For decades, there have been constant and unrelenting efforts to enforce the habits of putting on the seat belt or the helmet. Statistics have shown they reduce road fatalities, but like I said, it is the safety culture that made all this happen.
On the digital front, the ransomware threats are unabated. In fact, despite organizations (and individuals), both large and small, being more aware of cyber-hygiene practices more than ever, the magnitude of ransomware attacks has multiplied. Threat actors still see weaknesses and gaps, and vulnerabilities in the digital realms, and thus, these are lucrative ventures that compliment the endeavours.
Time to look at Data Management
The Cost-Benefits-Risks Conundrum of Data Management
And I have said this before in the past. At a recent speaking engagement, I brought it up again. I said that ransomware is not a cybersecurity problem. Ransomware is a data management problem. I got blank stares from the crowd.
I get it. It is hard to convince people and companies to embrace a better data management culture. I think about the Cost-Benefits-Risk triangle while I was analyzing the lack of data management culture used in many organizations when combating ransomware.
I get it that Cybersecurity is big business. Even many of the storage guys I know wanted to jump into the cybersecurity bandwagon. Many of the data protection vendors are already mashing their solutions with a cybersecurity twist. That is where the opportunities are, and where the cool kids hang out. I get it.
Cybersecurity technologies are more tangible than data management. I get it when the C-suites like to show off shiny new cybersecurity “toys” because they are allowed to brag. Oh, my company has just implemented security brand XXX, and it’s so cool! They can’t be telling their golf buddies that they have a new data management culture, can they? What’s that?