Hail Hydra!

The last of the Storage Field Day 6 on November 7th took me and the other delegates to NEC. There was an obvious, yet eerie silence among everyone about this visit. NEC? Are you kidding me?

NEC isn’t exactly THE exciting storage company in the Silicon Valley, yet I was pleasantly surprised with their HydraStorprowess. It is indeed quite a beast, with published numbers of backup throughput of 4PB/hour, and scales to 100PB of capacity. Most impressive indeed, and HydraStor deserves this blogger’s honourable architectural dissection.

HydraStor is NEC’s grid-based, scale-out storage platform with an object storage backend. The technology, powered by the DynamicStor ™ software, a distributed file system laid over the HydraStor grid architecture. At the same time, it has the DataRedux™ technology that provides the global in-line deduplication as the HydraStor ingests data for data protection, replication, archiving and WORM purposes. It is a massive data consolidation platform, storing gazillion loads of data (100PB you say?) for short-term and long-term retention and recovery.

The architecture is indeed solid, and its data availability goes beyond traditional RAID-level resiliency. HydraStor employs their proprietary erasure coding, called Distributed Resilient Data™. The resiliency knob can be configured to withstand 6 concurrent disks or nodes failure, but by default configured with a resiliency level of 3.

We can quickly deduce that DynamicStor™, DataRedux™ and Distributed Resilient Data™ are the technology pillars of HydraStor. How do they work, and how do they work together?

Let’s look a bit deeper into the HydraStor architecture.

HydraStor is made up of 2 types of nodes:

  • Accelerator Nodes
  • Storage Nodes

The Accelerator Nodes (AN) are the access nodes. They interface with the HydraStor front end, which could be CIFS, NFS or OST (Open Storage Technology). The AN nodes chunks the in-coming data and performs in-line deduplication at a very high speed. It can reach speed of 300TB/hour, which is blazingly fast!

The AN nodes also runs DynamicStor™, handling the performance heavy-lifting portion of HydraStor. The chunked data from the AN nodes are then passed on to the Storage Nodes (SN), where they are further “deduped in-line” to determined if the chunks are unique or not. It is a two-step inline deduplication process. Below is a diagram showing the ANs built above the SNs in the HydraStor grid architecture.

NEC AN & SN grid architecture

 

The HydraStor grid architecture is also a very scalable architecture, allow the dynamic scale-in and scale-out of both ANs and SNs. AN nodes and SN nodes can be added or removed into the system, auto-configuring and auto-optimizing while everything stays online. This capability further strengthens the reliability and the resiliency of the HydraStor.

NEC Hydrastor dynamic topology

Moving on to DataRedux™. DataRedux™ is HydraStor’s global in-line data deduplication technology. It performs dedupe at the sub-file level, with variable length window. This is performed at the AN nodes and the SN nodes level,chunking and creating unique hash values. All unique chunks are further compressed with a modified LZ compression algorithm, shrinking the data to its optimized footprint on the disk storage. To maintain the global in-line deduplication, the hash table is available across the HydraStor cluster.

NEC Deduplication & Compression

The unique data chunk resulting from deduplication and compression are then written to disks using the configured Distributed Resilient Data™ (DRD) algorithm, at its set resiliency level.

At the junction of DRD, with erasure coding parity, the data is broken up into multiples of fragments and assigned a parity to a grouping of fragments. If the resiliency level is set to 3 (the default), the data is broken into 12 pieces, 9 data fragments + 3 parity fragments. The 3 parity fragments corresponds to the resiliency level of 3. See diagram below of the 12 fragments spread across a group of selected disks in the storage pool of the Storage Nodes.

NEC DRD erasure coding on Storage Nodes

 

If the HydraStor experiences a failure in the disks or nodes, and has resulted in the loss of a fragment or fragments, the DRD self-healing function will auto-rebuild and auto-reconfigure the recovered fragments in another set of disks, maintaining the level of 3 parities.

The resiliency level, as mentioned earlier, can be set up to 6, boosting the HydraStor survival factor of 6 disks or nodes failure in the grid. See below of how the autonomous DRD recovery works:

NEC Autonomous Data recovery

Despite lacking the razzle dazzle of most Silicon Valley storage startups and upstarts, credit be given where credit is due. NEC HydraStor is indeed a strong show stopper.

However, in a market that is as fickle as storage, deduplication solutions such as HydraStor, EMC Data Domain, and HP StoreOnce, are being superceded by Copy Data Management technology, touted by Actifio. It was rumoured that EMC restructured their entire BURA (Backup Recovery Archive) division to DPAD (Data Protection and Availability Division) to go after the burgeoning copy data management market.

It would be good if NEC can take notice and turn their HydraStor “supertanker” towards the Copy Data Management market. That would be something special to savour.

P/S: NEC. Sorry about the title. I just couldn’t resist it 😉

Technology prowess of Riverbed SteelFusion

The Riverbed SteelFusion (aka Granite) impressed me the moment it was introduced to me 2 years ago. I remembered that genius light bulb moment well, in December 2012 to be exact, and it had left its mark on me. Like I said last week in my previous blog, the SteelFusion technology is unique in the industry so far and has differentiated itself from its WAN optimization competitors.

To further understand the ability of Riverbed SteelFusion, a deeper inspection of the technology is essential. I am fortunate to be given the opportunity to learn more about SteelFusion’s technology and here I am, sharing what I have learned.

What does the technology of SteelFusion do?

Riverbed SteelFusion takes SAN volumes from supported storage vendors in the central datacenter and projects the storage volumes (aka LUNs)to applications and hosts at the remote branches. The technology requires a paired relationship between SteelFusion Core (in the centralized datacenter) and SteelFusion Edge (at the branch). Both SteelFusion Core and Edge are fronted respectively by the Riverbed SteelHead WAN optimization device, to deliver the performance required.

The diagram below gives an overview of how the entire SteelFusion network architecture is like:

Riverbed SteelFusion Overall Solution 2 Continue reading

Convergence data strategy should not forget the branches

The word “CONVERGENCE” is boiling over as the IT industry goes gaga over darlings like Simplivity and Nutanix, and the hyper-convergence market. Yet, if we take a step back and remove our emotional attachment from the frenzy, we realize that the application and implementation of hyper-convergence technologies forgot one crucial elementThe other people and the other offices!

ROBOs (remote offices branch offices) are part of the organization, and often they are given the shorter end of the straw. ROBOs are like the family’s black sheeps. You know they are there but there is little mention of them most of the time.

Of course, through the decades, there are efforts to consolidate the organization’s circle to include ROBOs but somehow, technology was lacking. FTP used to be a popular but crude technology that binds the branch offices and the headquarter’s operations and data services. FTP is still used today, in countries where network bandwidth costs a premium. Data cloud services are beginning to appear of part of the organization’s outreaching strategy to include ROBOs but the fear of security weaknesses, data breaches and misuses is always there. Often, concerns of the weaknesses of the cloud overcome whatever bold strategies concocted and designed.

For those organizations in between, WAN acceleration/optimization techonolgy is another option. Companies like Riverbed, Silverpeak, F5 and Ipanema have addressed the ROBOs data strategy market well several years ago, but the demand for greater data consolidation and centralization, tighter and more effective data management and data control to meet the data compliance and data governance requirements, has grown much more sophisticated and advanced. Continue reading

No Flash in the pan

The storage networking market now is teeming with flash solutions. Consumers are probably sick to their stomach getting a better insight which flash solution they should be considering. There are so much hype, fuzz and buzz and like a swarm of bees, in the chaos of the moment, there is actually a calm and discerning pattern slowly, but surely, emerging. Storage networking guys would probably know this thing well, but for the benefit of the other readers, how we view flash (and other solid state storage) becomes clear with the picture below: Flash performance gap

(picture courtesy of  http://electronicdesign.com/memory/evolution-solid-state-storage-enterprise-servers)

Right at the top, we have the CPU/Memory complex (labelled as Processor). Our applications, albeit bytes and pieces of them, run in this CPU/Memory complex.

Therefore, we can see Pattern #1 showing up. Continue reading

SMB Witness Protection Program

No, no, FBI is not in the storage business and there are no witnesses to protect.

However, SMB 3.0 has introduced a RPC-based mechanism to inform the clients of any state change in the SMB servers. Microsoft calls it Service Witness Protocol [SWP], and its objective is provide a much faster notification service allow the SMB 3.0 clients to do a failover. In previous SMB 1.0 and even in SMB 2.x, the SMB clients rely on time-out services. The time-out services, either SMB or TCP, could take up as much as 30-45 seconds, and this creates a high latency that is disruptive to enterprise applications.

SMB 3.0, as mentioned in my previous post, had a total revamp, and is now enterprise ready. In what Microsoft calls “Continuously Available” File Service, the SMB 3.0 supports clustered or scale-out file servers. The SMB shares must be shared as “Continuously Available” shares and mapped to SMB 3.0 clients. As shown in the diagram below (provided by SNIA’s webinar),

SMB 3.0 CA Shares

Client A mapping to Server 1 share (\\srv1\CAshr). Client A has a share “handle” that establishes a connection with a corresponding state of the session. The state of the session is synchronously kept consistent with a corresponding state in Server 2.

The Service Witness Protocol is not responsible for the synchronization of the states in the SMB file server cluster. Microsoft has left the HA/cluster/scale-out capability to the proprietary technology method of the NAS vendor. However, SWP regularly observes the status of all services under its watch. Continue reading

SMB on steroids but CIFS lord isn’t pleased

I admit it!

I am one of the guilty parties who continues to use CIFS (Common Internet File System) to represent the Windows file sharing protocol. And a lot of vendors continue to use the “CIFS” word loosely without knowing that it was a something from a bygone era. One of my friends even pronounced it as “See Fist“, which sounded even funnier when he said it. (This is for you Adrian M!)

And we couldn’t be more wrong because we shouldn’t be using the CIFS word anymore. It is so 90’s man! And the tell-tale signs have already been there but most of us chose to ignore it with gusto. But a recent SNIA Webinar titled “SMB 3.0 – New opportunities for Windows Environment” aims to dispel our incompetence and change our CIFS-venture to the correct word – SMB (Server Message Block).

A selfie photo of Dennis Chapman, Senior Technical Director for Microsoft Solutions at NetApp from the SNIA webinar slides above, wants to inform all of us that … SMB History Continue reading

Supercharging Ethernet … with a PAUSE

It’s been a while since I wrote. I had just finished a 2-week stint in Melbourne, conducting 2 Data ONTAP classes and had a blast.

But after almost 3 1/2 months of doing little except teaching NetApp classes, the stint is ending. I wanted it that way, to take a break and also to take on a new challenge. I will be taking on a job with Hitachi Data Systems, going back to the industry that I have termed the “Wild, wild west”. After a 4 1/2-year hiatus, I think that industry still behaves the way it is .. brash, exclusive, rich! The oligarchy of the oilmen are still laughing their way to the banks. And it will be my job to sell storage (and cloud) solutions to them.

In my Netapp (and EMC) engagements in the past 6 months, I have seen the greater adoption of iSCSI over Fibre Channel, and many has predicted that 10Gigabit Ethernet will be the infliction point where iSCSI can finally stand shoulder-to-shoulder with Fibre Channel. After all, 10 Gigabit/sec is definitely faster than 8 Gigabit/sec Fibre Channel, right? WRONG! (I am perfectly aware there is a 16 Gigabit/sec Fibre Channel, but can’t you see I am trying to start an argument here?)

Delivering SCSI data load over iSCSI on 10 Gigabit/sec Ethernet does not necessarily mean that it would be faster than delivering the same payload over 8 Gigabit/sec Fibre Channel. This statement can be viewed in many different ways and hence the favourite IT reply would be … “It depends“.

I would leave this performance argument for another day but today we are going to talk about some of the key additions to supercharge 10 Gigabit Ethernet for data delivery in storage networking capacity. In addition, 10 Gigabit Ethernet is the primary transport for Fibre Channel over Ethernet (FCoE) and it is absolutely critical that 10 Gigabit Ethernet must be close to as reliable as Fibre Channel for data delivery in a storage network.

Ethernet is a non-deterministic protocol, and therefore, its delivery result is dependent on many factors. Likewise 10 Gigabit Ethernet has inherited part of that feature. The delivery of data over Ethernet can be lossy, i.e. packets can get lost and the upper layer application protocols will have to respond to detecte the dropped packets and to ensure lost packets are redelivered to complete the consignment. But delivering data in a storage network cannot be lossy and in most cases of SANs, the requirement is to have the data arrive in the sequence they were delivered. The SAN fabric (especially with the common services of Layer 3 of the FC protocol stack) and the deterministic nature of Fibre Channel protocol were the reasons many has relied on Fibre Channel SAN technology for more than a decade. How can 10 Gigabit Ethernet respond?

Continue reading

Time for Fujitsu Malaysia to twist and shout and yet …

The worldwide storage market is going through unprecedented change as it is making baby steps out of one of the longest recessions in history. We are not exactly out of the woods yet, given the Eurozone crisis, slowing growth in China and the little sputters in the US economy.

Back in early 2012, Fujitsu has shown good signs of taking market share in the enterprise storage but what happened to that? In the last 2 quarters, the server boys in the likes of HP, IBM and Dell storage market share have either shrunk (in the case of HP and Dell) or tanked (as in IBM). I would have expected Fujitsu to continue its impressive run and continue to capture more of the enterprise market, and yet it didn’t. Why?

I was given an Eternus storage technology update by the Fujitsu Malaysia pre-sales team more than a year ago. It has made some significant gains in technology such as Advanced Copy, Remote Copy, Thin Provisioning, and Eco-Mode, but I was unimpressed. The technology features were more like a follower, since every other storage vendor in town already has those features.

Continue reading

4TB disks – the end of RAID

Seriously? 4 freaking terabyte disk drives?

The enterprise SATA/SAS disks have just grown larger, up to 4TB now. Just a few days ago, Hitachi boasted the shipment of the first 4TB HDD, the 7,200 RPM Ultrastar™ 7K4000 Enterprise-Class Hard Drive.

And just weeks ago, Seagate touted their Heat-Assisted Magnetic Recording (HAMR) technology will bring forth the 6TB hard disk drives in the near future, and 60TB HDDs not far in the horizon. 60TB is a lot of capacity but a big, big nightmare for disks availability and data backup. My NetApp Malaysia friend joked that the RAID reconstruction of 60TB HDDs would probably finish by the time his daughter finishes college, and his daughter is still in primary school!.

But the joke reflects something very serious we are facing as the capacity of the HDDs is forever growing into something that could be unmanageable if the traditional implementation of RAID does not change to meet such monstrous capacity.

Yes, RAID has changed since 1988 as every vendor approaches RAID differently. NetApp was always about RAID-4 and later RAID-DP and I remembered the days when EMC had a RAID-S. There was even a vendor in the past who marketed RAID-7 but it was proprietary and wasn’t an industry standard. But fundamentally, RAID did not change in a revolutionary way and continued to withstand the ever ballooning capacities (and pressures) of the HDDs. RAID-6 was introduced when the first 1TB HDDs first came out, to address the risk of a possible second disk failure in a parity-based RAID like RAID-4 or RAID-5. But today, the 4TB HDDs could be the last straw that will break the camel’s back, or in this case, RAID’s back.

RAID-5 obviously is dead. Even RAID-6 might be considered insufficient now. Having a 3rd parity drive (3P) is an option and the only commercial technology that I know of which has 3 parity drives support is ZFS. But having 3P will cause additional overhead in performance and usable capacity. Will the fickle customer ever accept such inadequate factors?

Note that 3P is not RAID-7. RAID-7 is a trademark of a old company called Storage Computer Corporation and RAID-7 is not a standard definition of RAID.

One of the biggest concerns is rebuild times. If a 4TB HDD fails, the average rebuild speed could take days. The failure of a second HDD could up the rebuild times to a week or so … and there is vulnerability when the disks are being rebuilt.

There are a lot of talks about declustered RAID, and I think it is about time we learn about this RAID technology. At the same time, we should demand this technology before we even consider buying storage arrays with 4TB hard disk drives!

I have said this before. I am still trying to wrap my head around declustered RAID. So I invite the gurus on this matter to comment on this concept, but I am giving my understanding on the subject of declustered RAID.

Panasas‘ founder, Dr. Garth Gibson is one of the people who proposed RAID declustering way back in 1999. He is a true visionary.

One of the issues of traditional RAID today is that we still treat the hard disk component in a RAID domain as a whole device. Traditional RAID is designed to protect whole disks with block-level redundancy.  An array of disks is treated as a RAID group, or protection domain, that can tolerate one or more failures and still recover a failed disk by the redundancy encoded on other drives. The RAID recovery requires reading all the surviving blocks on the other disks in the RAID group to recompute blocks lost on the failed disk. In short, the recovery, in the event of a disk failure, is on the whole object and therefore, a entire 4TB HDD has to be recovered. This is not good.

The concept of RAID declustering is to break away from the whole device idea. Apply RAID at a more granular scale. IBM GPFS works with logical tracks and RAID is applied at the logical track level. Here’s an overview of how is compares to the traditional RAID:

The logical tracks are spread out algorithmically spread out across all physical HDDs and the RAID protection layer is applied at the track level, not at the HDD device level. So, when a disk actually fails, the RAID rebuild is applied at the track level. This significant improves the rebuild times of the failed device, and does not affect the performance of the entire RAID volume much. The diagram below shows the declustered RAID’s time and performance impact when compared to a traditional RAID:

While the IBM GPFS approach to declustered RAID is applied at a semi-device level, the future is leaning towards OSD. OSD or object storage device is the next generation of storage and I blogged about it some time back. Panasas is the leader when it comes to OSD and their radical approach to this is applying RAID at the object level. They call this Object RAID.

With object RAID, data protection occurs at the file-level. The Panasas system integrates the file system and data protection to provide novel, robust data protection for the file system.  Each file is divided into chunks that are stored in different objects on different storage devices (OSD).  File data is written into those container objects using a RAID algorithm to produce redundant data specific to that file.  If any object is damaged for whatever reason, the system can recompute the lost object(s) using redundant information in other objects that store the rest of the file.

The above was a quote from the blog of Brent Welch, Panasas’ Director of Software Architecture. As mentioned, the RAID protection of the objects in the OSD architecture in Panasas occurs at file-level, and the file or files constitute the object. Therefore, the recovery domain in Object RAID is at the file level, confining the risk and damage of data loss within the file level and not at the entire device level. Consequently, the speed of recovery is much, much faster, even for 4TB HDDs.

Reliability is the key objective here. Without reliability, there is no availability. Without availability, there is no performance factors to consider. Therefore, the system’s reliability is paramount when it comes to having the data protected. RAID has been the guardian all these years. It’s time to have a revolutionary approach to safeguard the reliability and ensure data availability.

So, how many vendors can claim they have declustered RAID?

Panasas is a big YES, and they apply their intelligence in large HPC (high performance computing) environments. Their technology is tried and tested. IBM GPFS is another. But where are the rest?

 

Chink in NetApp MetroCluster?

Ok, let me clear the air about the word “Chink” (before I get into trouble), which is not racially offensive unlike the news about ESPN having to fire 2 of their employees for using the word “Chink” on Jeremy Lin.  According to my dictionary (Collins COBUILD), chink is a very narrow crack or opening on a surface and I don’t really know the derogatory meaning of “chink” other than the one in my dictionary.

I have been doing a spot of work for a friend who has just recently proposed NetApp MetroCluster. When I was at NetApp many years ago, I did not have a chance to get to know more about the solution, but I do know of its capability. After 6 years away, coming back to do a bit of NetApp was fun for me, because I was always very comfortable with the NetApp technology. But NetApp MetroCluster, and in this opportunity, NetApp Fabric MetroCluster presented me an opportunity to get closer to the technology.

I have no doubt in my mind, this is one of the highest available storage solutions in the market, and NetApp is not modest about beating its own drums. It touts “No SPOF (Single Point of Failure“, and rightly so, because it has put in all the right plugs for all the points that can fail.

NetApp Fabric MetroCluster is a continuous availability solution that stretches over 100km. It is basically a NetApp Cluster with mirrored storage but with half of  its infrastructure mirror being linked very far apart, over Fibre Channel components and dark fiber. Here’s a diagram of how NetApp Fabric Metrocluster works for a VMware FT (Fault Tolerant) environment.

There’s a lot of simplicity in the design, because when I started explaining it to the prospect, I was amazed how easy it was to articulate about it, without all the fancy technical jargons or fuzz. I just said … “imagine a typical cluster, with an interconnect heartbeat, and the storage are mirrored. Then imagine the 2 halves are being pulled very far apart … That’s NetApp Fabric MetroCluster”. It was simply blissful.

But then there were a lot of FUDs (fear, uncertainty, doubt) thrown in by the competitor, feeding the prospect with plenty of ammunition. Yes, I agree with some of the limitations, such as no SATA support for now. But then again, there is no perfect storage solution. In fact, Chris Mellor of The Register wrote about God’s box, the perfect storage, but to get to that level, be prepared to spend lots and lots of money! Furthermore, once you fix one limitation or bottleneck in one part of the storage, it introduces a few more challenges here and there. It’s never ending!

Side note: The conversation triggered the team to check with NetApp for SATA support in Fabric MetroCluster. Yes, it is already supported in ONTAP 8.1 and the present version is 8.1RC3. Yes, SATA support will be here soon. 

More FUDs as we went along and when I was doing my research, some HP storage guys on the web were hitting at NetApp MetroCluster. Poor HP! If you do a search of NetApp MetroCluster, I am sure you will come across these 2 HP blogs in 2010, deriding the MetroCluster solution. Check out this and the followup on the first blog. What these guys chose to do was to break the MetroCluster apart into 2 single controllers after a network failure, and attack it from that level.

Yes, when you break up the halves, it is basically a NetApp system with several single point of failure (SPOF). But then again, who isn’t? Almost every vendor’s storage will have some SPOFs when you break the mirror.

Well, I can tell you is, the weakness of NetApp MetroCluster is, it’s not continuous data protection (CDP). Once your applications have written garbage on one volume, the garbage is reflected on the mirrored volume. You can’t roll back and you live with the data corruption. That is why storage vendors, including NetApp, offer snapshots – point-in-time copies where you can roll back to the point before the data corruption occurred. That is why CDP gives the complete granularity of recovery in every write I/O and that’s something NetApp does not have. That’s NetApp’s MetroCluster weakness.

But CDP is aimed towards data recovery, NOT data availability. It is focused on customers’ whose requirements are ability to get the data back to some usable state or form after the event of a disaster (big or small), while the MetroCluster solution is focused on having the data available all the time. They are 2 different set of requirements. So, it depends on what the customer’s requirement is.

Then again, come to think of it, NetApp has no CDP technology of their own … isn’t it?