AI and the Data Factory

When I first heard of the word “AI Factory”, the world was blaring Jensen Huang‘s keynote at NVIDIA GTC24. I thought those were cool words, since he mentioned about the raw material of water going into the factory to produce electricity. The analogy was spot on for the AI we are building.

As I engage with many DDN partners and end users in the region, week in, week out, the “AI Factory” word keeps popping into conversations. Yet, many still do not know how to go about building this “AI Factory”. They only know they need to buy GPUs, lots of them. These companies’ AI ambitions are unabated. And IDC predicts that worldwide spending on AI will double by 2028, and yet, the ROI (returns on investment) remains elusive.

At the ground level, based on many conversations so far, the common theme is, the steps to begin building the AI Factory are ambiguous and fuzzy to most. I like to share my views from a data storage point of view. Hence, my take on the Data Factory for AI.

Are you AI-ready?

We have to have a plan but before we take the first step, we must look at where we are standing at the present moment. We know that to train AI, the proverbial step is, we need lots of data. Deep Learning (DL) works with Large Language Models (LLMs), and Generative AI (GenAI), needs tons of data.

If the company knows where they are, they will know which phase is next. So, in the AI Maturity Model (I simplified the diagram below), where is your company now? Are you AI-ready?

Simplified AI Maturity Model

Get the Data Strategy Right

In his interview with CRN, MinIO’s CEO AB Periasamy quoted “For generative AI, they realized that buying more GPUs without a coherent data strategy meant GPUs are going to idle out”. I was struck by his wisdom about having a coherent data strategy because that is absolutely true. This is my starting point. Having the Right Data Strategy.

In the AI world, from a data storage guy, data is the fuel. Data is the raw material that Jensen alluded to, if it was obvious. We have heard this anecdotal quote many times before, even before the AI phenomenon took over. AI is data-driven. Data is vital for the ROI of AI projects. And thus, we must look from the point of the data to make the AI Factory successful.

Continue reading

What next after Cyber Resiliency?

There was a time some years ago when some storage vendors, especially the object storage ones, started calling themselves the “last line of defence”. And even further back, when the purpose-built backup appliances (PBBAs) first appeared, a very smart friend of mine commented that they shouldn’t call it “backup appliance”, but rather they should call it “restore appliance”. That was because the data restoration part, or to be more relevant in today’s context, data recovery is the key to a crucial line of defence against cybersecurity threats to data, especially ransomware. We have a saying in the industry. “Hundreds of good backups are not as good as one good restore.” Of course, this data restoration part has become more sophisticated in the data recovery processes.

In recent years, we also seen the amalgamation of both data protection species – the backup/restore side and the cybersecurity side – giving rise to the term and the proliferation of Cyber Resilience.

Dialing Cyber Resilience (Picture from tehtris.com)

I have no qualms or lack of confidence of the cyber resilience technologies. I am pretty sure they can do the job extremely well, so much so, that some give million dollars guarantees if ever their solution failed. Druva announced their Data Resiliency Guarantee of USD$10 million and Rubrik has their Ransomware Recovery Warranty.

Of course, these warranties and guarantees come with terms and conditions, and caveats and not everyone is besotted by these big numbers’ payout. My friend, Andrew Martin, wrote a tongue-in-cheek piece last year about Rubrik’s warranty guarantee in his Data Storage Asia blog last year, which discussed whether it was Rubrik’s genuineness or spuriousness that might win or lose customers’ affections. You should read his blog to decide.

Continue reading

Accelerated Data Paths of High Performance Storage is the Cornerstone of building AI

It has been 2 months into my new role at DDN as a Solutions Architect. With many revolving doors around me, I have been trying to find the essence, the critical cog of the data infrastructure that supports the accelerated computing of the Nvidia GPU clusters. The more I read and engage, a pattern emerged. I found that cog in the supercharged data paths between the storage infrastructure systems and the GPU clusters. I will share more.

To set the context, let me start with a wonderful article I read in CIO.com back in July 2024. It was titled “Storage: The unsung hero of AI deployments“. It was music to my ears because as a long-time practitioner in the storage technology industry, it is time the storage industry gets its credit it deserves.

What is the data path?

To put it simply, a Data Path, from a storage context, is the communication route taken by the data bits between the compute system’s processing and program memory and the storage subsystem. The links and the established sessions can be within the system components such as the PCIe bus or external to the system through the shared networking infrastructure.

High speed accelerated data paths

In the world of accelerated computing such as AI and HPC, there are additional, more advanced technologies to create even faster delivery of the data bits. This is the accelerated data paths between the compute nodes and the storage subsystems. Following on, I share a few of these technologies that are lesser used in the enterprise storage segment.

Continue reading

Nurturing Data Governance for Cybersecurity and AI

Towards the middle of the 2000s, I started getting my exposure in Data Governance. This began as I was studying and practising to be certified as an Oracle Certified Professional (OCP) circa 2002-2003. My understanding of the value of data and databases in the storage world, now better known as data infrastructure, grew and expanded quickly. I never gotten my OCP certification because I ran out of money investing in the 5 required classes that included PL/SQL, DBA Admin I and II, and Performance Tuning. My son, Jeffrey was born in 2002, and money was tight.

The sentiment of data governance of most organizations I have engaged with at that time, and over the next course of almost 18 years or so, pre-Covid, the practice of data governance was to comply to some regulatory requirements. 

All that is changing. Early 2024, NIST released the second version of their Cybersecurity Framework (CSF). CSF 2.0 placed Data Governance in the center of the previous 5 pillars of CSF 1.1. The diagram below shows the difference between the versions.

High level change of Cybersecurity Framework 1.1 to 2.0.

Ripples like this in my data management radar are significant, noticeable and important to me. I blogged about it in my April 2024 blog “NIST CSF 2.0 brings Data Governance into the Light“.

Continue reading

The All-Important Storage Appliance Mindset for HPC and AI projects

I am strong believer of using the right tool to do the job right. I have said this before 2 years ago, in my blog “Stating the case for a Storage Appliance approach“. It was written when I was previously working for an open source storage company. And I am an advocate of the crafter versus assembler mindset, especially in the enterprise and high- performance storage technology segments.

I have joined DDN. Even with DDN that same mindset does not change a bit. I have been saying all along that the storage appliance model should always be the mindset for the businesses’ peace-of-mind.

My view of the storage appliance model began almost 25 years. I came into NAS systems world via Sun Microsystems®. Sun was famous for running NFS servers on general Sun Solaris servers. NFS services on Unix systems. Back then, I remember arguing with one of the Sun distributors about the tenets of running NFS over 100Mbit/sec Ethernet on Sun servers. I was drinking Sun’s Kool-Aid big time.

When I joined Network Appliance® (now NetApp®) in 2000, my worldview of putting software on general purpose servers changed. Network Appliance®, had one product family, the FAS700 (720, 740, 760) family. All NetApp® did was to serve NFS services in the beginning. They were the NAS filers and nothing else.

I was completed sold on the appliance way with NetApp®. Firstly, it was my very first time knowing such network storage services could be provisioned with an appliance concept. This was different from Sun. I was used to managing NFS exports on a Sun SPARCstation 20 to Unix clients in the network.

Secondly, my mindset began to shape that “you have to have the right tool to the job correctly and extremely well“. Well, the toaster toasts bread very well and nothing else. And the fridge (an analogy used by Dave Hitz, I think) does what it does very well too. That is what the appliance does. You definitely cannot grill a steak with a bread toaster, just like you can’t run an excellent, ultra-high performance storage services to serve the demanding AI and HPC applications on a general server platform. You have to have a storage appliance solution for High-Speed Storage.

That little Network Appliance® toaster award given out to exemplary employees stood vividly in my mind. The NetApp® tagline back then was “Fast, Simple, Reliable”. That solidifies my mindset for the high-speed storage in AI and HPC projects in present times.

DDN AI400X2 Turbo Appliance

Costs Benefits and Risks

I like to think about what the end users are thinking about. There are investments costs involved, and along with it, risks to the investments as well as their benefits. Let’s just simplify and lump them into Cost-Benefits-Risk analysis triangle. These variables come into play in the decision making of AI and HPC projects.

Continue reading

Preliminary Data Taxonomy at ingestion. An opportunity for Computational Storage

Data governance has been on my mind a lot lately. With all the incessant talks and hype about Artificial Intelligence, the true value of AI comes from good data. Therefore, it is vital for any organization embarking on their AI journey to have good quality data. And the journey of the lifecycle of data in an organization starts at the point of ingestion, the data source of how data is either created, acquired to be presented up into the processing workflow and data pipelines for AI training and onwards to AI applications.

In biology, taxonomy is the scientific study and practice of naming, defining and classifying biological organisms based on shared characteristics.

And so, begins my argument of meshing these 3 topics together – data ingestion, data taxonomy and with Computational Storage. Here goes my storage punditry.

Data Taxonomy in post-injection 

I see that data, any data, has to arrive at a repository first before they are given meaning, context, specifications. These requirements are different from file permissions, ownerships, ctime and atime timestamps, the content of the ingested data stream are made to fit into the mould of the repository the data is written to. Metadata about the content of the data gives the data meaning, context and most importantly, value as it is used within the data lifecycle. However, the metadata tagging, and preparing the data in the ETL (extract load transform) or the ELT (extract load transform) process are only applied post-ingestion. This data preparation phase, in which data is enriched with content metadata, tagging, taxonomy and classification, is expensive, in term of resources, time and currency.

Elements of a modern event-driven architecture including data ingestion (Credit: Qlik)

Even in the burgeoning times of open table formats (Apache Iceberg, HUDI, Deltalake, et al), open big data file formats (Avro, Parquet) and open data formats (CSV, XML, JSON et.al), the format specifications with added context and meanings are added in and augmented post-injection.

Continue reading

Disaggregation and Composability vital for AI/DL models to scale

New generations of applications and workloads like AI/DL (Artificial Intelligence/Deep Learning), and HPC (High Performance Computing) are breaking the seams of entrenched storage infrastructure models and frameworks. We cannot continue to scale-up or scale-out the storage infrastructure to meet these inundating fluctuating I/O demands. It is time to look at another storage architecture type of infrastructure technology – Composable Infrastructure Architecture.

Infrastructure is changing. The previous staid infrastructure architecture parts of compute, network and storage have long been thrown of the window, precipitated by the rise of x86 server virtualization almost 20 years now. It triggered a tsunami of virtualizing everything, including storage virtualization, which eventually found a more current nomenclature – Software Defined Storage. Both storage virtualization and software defined storage (SDS) are similar and yet different and should be revered through different contexts and similar goals. This Tech Target article laid out both nicely.

As virtualization raged on, converged infrastructure (CI) which evolved into hyperconverged infrastructure (HCI) went fever pitch for a while. Companies like Maxta, Pivot3, Atlantis, are pretty much gone, with HPE® Simplivity and Cisco® Hyperflex occasionally blipped in my radar. In a market that matured very fast, HCI is now dominated by Nutanix™ and VMware®, with smaller Microsoft®, Dell EMC® following them.

From HCI, the attention of virtualization has shifted something more granular, more scalable in containerization. Despite a degree of complexity, containerization is taking agility and scalability to the next level. Kubernetes, Dockers are now mainstay nomenclature of infrastructure engineers and DevOps. So what is driving composable infrastructure? Have we reached the end of virtualization? Not really.

Evolution of infrastructure. Source: IDC

It is just that one part of the infrastructure landscape is changing. This new generation of AI/ML workloads are flipping the coin to the other side of virtualization. As we see the diagram above, IDC brought this mindset change to get us to Think Composability, the next phase of Infrastructure.

Continue reading

Reverting the Cloud First mindset

When cloud computing was all the rage, every business wanted to be on-board. Those who resisted felt the heat as the FOMO (fear of missing out) feeling set in, especially those who were doing this thing called “Digital Transformation“. The public cloud service providers took advantage of the cloud computing frenzy, calling for a “Cloud First” strategy. For a number of years, the marketing worked. The cloud first mentality became the tip of the tongue of many, encouraging droves to cloud adoption.

All this was fine and dandy but recently, we are beginning to hear and read about a few high profile cases of cloud repatriation. DHH‘s journal of Basecamp’s exit from AWS in late 2022 reverberated strongly, saying what should be a wake up call for those caught in the Cloud Computing Hotel California’s gilded cage. An even more bizarre claim about cost savings of $400 million over 3 years was made by Ahrefs, a Singapore SEO software maker which chose to use a co-location facility instead of a public cloud service.

Cloud First is not Cool (not sure where is the source is from but I got this off Twitter some months ago)

While these big news jail breaks are going against the grain, most are still in that diaspora to jump into the cloud services everywhere. In droves even. But, on and off, I am beginning to hear some grips, grunts and groans from end users in the cloud. These news have emboldened some to think that there is another choice besides shifting all IT and data services to the cloud.

Continue reading

Project COSI

The S3 (Simple Storage Service) has become a de facto standard for accessing object storage. Many vendors claim 100% compatibility to S3, but from what I know, several file storage services integration and validation with the S3 have revealed otherwise. There are certain nuances that have derailed some of the more advanced integrations. I shall not reveal the ones that I know of, but let us use this thought as a basis of our discussion for Project COSI in this blog.

Project COSI high level architecture

What is Project COSI?

COSI stands for Container Object Storage Interface. It is still an alpha stage project in Kubernetes version 1.25 as of September 2022 whilst the latest version of Kubernetes today is version 1.26. To understand the objectives COSI, one must understand the journey and the challenges of persistent storage for containers and Kubernetes.

For me at least, there have been arduous arguments of provisioning a storage repository that keeps the data persistent (and permanent) after containers in a Kubernetes pod have stopped, or replicated to another cluster. And for now, many storage vendors in the industry have settled with the CSI (container storage interface) framework when it comes to data persistence using file-based and block-based storage. You can find a long list of CSI drivers here.

However, you would think that since object storage is the most native storage to containers and Kubernetes pods, there is already a consistent way to accessing object storage services. From the objectives set out by Project COSI, turns out that there isn’t a standard way to provision and accessing object storage as compared to the CSI framework for file-based and block-based storage. So the COSI objectives were set to:

  • Kubernetes Native – Use the Kubernetes API to provision, configure and manage buckets
  • Self Service – A clear delineation between administration and operations (DevOps) to enable self-service capability for DevOps personnel
  • Portability – Vendor neutrality enabled through portability across Kubernetes Clusters and across Object Storage vendors

Further details describing Project COSI can be found here at the Kubernetes site titled “Introducing COSI: Object Storage Management using Kubernetes API“.

Standardization equals technology adoption

Standardization means consistency, control, confidence. The higher the standardization across the storage and containerized apps industry, the higher the adoption of the technology. And given what I have heard from the industry over these few years, Kubernetes, to me, even till this day, is a platform and a framework that are filled and riddled with so many moving parts. Many of the components looks the same, feels the same, and sounds the same, but might not work out the same when deployed.

Therefore, the COSI standardization work is important and critical to grow this burgeoning segment, especially when we are rocketing towards disaggregation of computing service units, resources that be orchestrated to scale up or down at the execution of codes. Infrastructure-as-Code (IAC) is becoming a reality more and more with each passing day, and object storage is at the heart of this transformation for Kubernetes and containers.

Continue reading