NetApp SPECSfs record broken in 13 days


Thanks for my buddy, Chew Boon of HDS who put me on alert about the new leader of the SPECSfs benchmark results. NetApp “world record” has been broken 13 days later by Avere Systems.

Avere has posted the result of 1,564,404 NFS ops/sec with an ORT (overall response time) of 0.99 msec. This benchmark was done by 44 nodes, using 6.808 TB of memory, with 800 HDDs.

Earlier this month, NetApp touted fantastic results and quickly came out with a TR comparing their solution with EMC Isilon. Here’s a table of the comparison

 

But those numbers are quickly made irrelevant by Avere FXT, and Avere claims to have the world record title with the “smallest footprint ever”. Here’s a comparison in Avere’s blog, with some photos to boot.

 

For the details of the benchmark, click here. And the news from PR Newswire.

If you have not heard of Avere, they are basically the core team of Spinnaker. NetApp acquired Spinnaker in 2003 to create the clustered file systems from the Spinnaker technology. The development and integration of Spinnaker into NetApp’s Data ONTAP took years and was buggy, and this gave the legroom for competitors like Isilon to take market share in the clustered NAS/scale-out NAS landscape.

Meanwhile, NetApp finally came did come good with the Spinnaker technology and with ONTAP 8.0.1 and 8.1, the codes of both platforms merged into one.

The Spinnaker team went on develop a new technology called the “A-3 Architecture” (shown below) and positioned itself as a NAS Accelerator.

avere-nas-1

The company has 2 series of funding and now has a high performance systems to compete with the big boys. The name, Avere Systems, is still pretty much unknown in this part of the world and this “world record” will help position them stronger.

But as I have said before, benchmarking are just ways to have bigger bragging rights. It is a game of leapfrogging, and pretty soon this Avere record will be broken. It is nice while it lasts.

Stop stroking your …

A few days after I wrote about the performance benchmark bag of tricks, EMC was the first to fire the first salvo at NetApp’s SPECSfs2008 world records on NFS IOPS.

EMC is obviously using all its ammo to deflate NetApp chest thumping act, with Storagezilla‘s blog. Mark Twomey,  who is the alter ego of Storagezilla posted several observations about NetApp apparent use of disk short stroking to artificially boost its performance numbers. This puts NetApp against the wall, with Alex MacDonald (who incidentally is SNIA NFSv4 co-chairman) of the office of the CTO responding hard to Storagezilla’s observation.

The news of this appeared in The Register. Read all about it.

With no letting up, the article also mentioned EMC Isilon’s CTO, Rob Pegler, adding more fuel to the fire.

I spoke about short stroking as some of the tricks used to gain better numbers in benchmark. And I also mentioned that these numbers have little use to the real work and I would like to add that these numbers are just there for marketing reasons. So, for you readers out there, benchmark is really not big of a deal.

Have a great weekend!

Performance benchmarks – the games that we play

First of all, congratulations to NetApp for beating EMC Isilon in the latest SPECSfs2008 benchmark for NFS IOPS. The news is everywhere and here’s one here.

EMC Isilon was blowing its horns several months ago when it  hit 1,112,705 IOPS recorded from a 140-node S200 cluster with 3,360 disk drives and a overall response time of 2.54 msecs. Last week, NetApp became top dog, pounding its chest with 1,512,784 IOPS on a 24 x FAS6240 nodes  with an overall response time of 1.53msecs. There were 1,728 450GB, 15,000rpm disk drives and the FAS6240s were fitted with Flash Cache.

And with each benchmark that you and I have seen before and after, we will see every storage vendors trying to best the other and if they did, their horns will be blaring, the fireworks are out and they will pounding their chests like Tarzan, saying “Who’s your daddy?” The euphoria usually doesn’t last long as performance records are broken all the time.

However, the performance benchmark results are not to be taken in verbatim because they are not true representations of real life, production environment. 2 years ago, the magazine, the defunct Byte and Switch (which now is part of Network Computing), did a 9-year study on File Systems and Storage Benchmarking. In a very interesting manner, it revealed that a lot of times, benchmarks results are merely reduced to single graphs which has little information about the details of how the benchmark was conducted, how long the benchmark took and so on.

The paper, published by Avishay Traeger and Erez Zadok from Stony Brook University and Nikolai Joukov and Charles P. Wright from the IBM T.J. Watson Research Center entitled, “A Nine Year Study of File System and Storage Benchmarking” studied 415 file systems from 106 published results and the article quoted:

Based on this examination the paper makes some very interesting observations and 
conclusions that are, in many ways, very critical of the way “research” papers have 
been written about storage and file systems.

 

Therefore, the paper highlighted the way the benchmark was done and the way the benchmark results were reported and judging by the strong title (It was titled “Lies, Damn Lies and File Systems Benchmarks”) of the online article that reviewed the study, benchmarks are not the pictures that says a thousand words.

Be it TPC-C, SPC1 or SPECSfs benchmarks, I have gone through some interesting experiences myself, and there are certain tricks of the trade, just like in a magic show. Some of the very common ones I come across are

  • Short stroking – a method to format a drive so that only the outer sectors of the disk platter are used to store data. This practice is done in I/O-intensive environments to increase performance.
  • Shortened test – performance tests that run for several minutes to achieve the numbers rather than prolonged periods (which mimics real life)
  • Reporting aggregated numbers – Note the number of nodes or controllers used to achieve the numbers. It is not ONE controller than can achieve the numbers, but an aggregated performance results factored by the number of controllers

Hence, to get to the published benchmark numbers in real life is usually not practical and very expensive. But unfortunately, customers are less educated about the way benchmarks are performed and published. We, as storage professionals, have to disseminate this information.

Ok, this sounds oxymoronic because if I am working for NetApp, why would I tell the truth that could actually hurt NetApp sales? But I don’t work for NetApp now and I think it is important for me do my duty to share more information. Either way, many people switch jobs every now and then, and so if you want to keep your reputation, be honest up front. It could save you a lot of work.