How valuable is your data anywhere?

I was a speaker at the Data Management and Document Control conference 2 weeks’s ago. It was a conference aimed at the Oil & Gas industry, and my presentation was primarily focused on Data in Exploration & Production (E&P) segment of the industry. That’s also the segment that brings in the mega big bucks!

The conversations with the participants have validated and strengthened the fact that no matter how we talk about how valuable data is to the organization, how data is the asset of the organization, the truth is most organization SUCKS big time when it comes to data management. The common issues faced in the E&P data management in Oil & Gas are probably quite similar to many other industries. For the more regulated industries such as banking, financial institutions, governments and telecommunications, data management, I would assume, is a tad better.

The fact of the matter is there little technology change in the past decade in data storage, data protection and data movement. There are innovations from a technology point of view but most technology innovations do not address the way data could be better managed, especially from a data consolidation point of view.

Continue reading

Praying to the hypervisor God

I was reading a great article by Frank Denneman about storage intelligence moving up the stack. It was pretty much in line with what I have been observing in the past 18 months or so, about the storage pendulum having swung back to DAS (direct attached storage). To be more precise, the DAS form factor I am referring to are physical server hardware that houses many disk drives.

Like it or not, the hypervisor has become the center of the universe in the IT space. VMware has become the indomitable force in the hypervisor technology, with Microsoft Hyper-V playing catch-up. The seismic shift of these 2 hypervisor technologies are leading storage vendors to place them on to the altar and revering them as deities. The others, with the likes of Xen and KVM, and to lesser extent Solaris Containers aren’t really worth mentioning.

This shift, as the pendulum swings from networked storage back to internal “direct-attached” storage are dictated by 4 main technology factors:

  • The x86 server architecture
  • Software-defined
  • Scale-out architecture
  • Flash-based storage technology

Anyone remember Thumper? Not the Disney character from the Bambi movie!

thumper-bambi-cartoon-character

When the SunFire X4500 (aka Thumper) was first released in (intermission: checking Wiki for the right year) in 2006, I felt that significant wound inflicted in the networked storage industry. Instead of the usual 4-8 hard disk drives in the all the industry servers at the time, the X4500 4U chassis housed 48 hard disk drives. The design and architecture were so astounding to me, I even went and bought a 1U SunFire X4150 for my personal server collection. Such was my adoration for Sun’s technology at the time.

Continue reading

Technology prowess of Riverbed SteelFusion

The Riverbed SteelFusion (aka Granite) impressed me the moment it was introduced to me 2 years ago. I remembered that genius light bulb moment well, in December 2012 to be exact, and it had left its mark on me. Like I said last week in my previous blog, the SteelFusion technology is unique in the industry so far and has differentiated itself from its WAN optimization competitors.

To further understand the ability of Riverbed SteelFusion, a deeper inspection of the technology is essential. I am fortunate to be given the opportunity to learn more about SteelFusion’s technology and here I am, sharing what I have learned.

What does the technology of SteelFusion do?

Riverbed SteelFusion takes SAN volumes from supported storage vendors in the central datacenter and projects the storage volumes (aka LUNs)to applications and hosts at the remote branches. The technology requires a paired relationship between SteelFusion Core (in the centralized datacenter) and SteelFusion Edge (at the branch). Both SteelFusion Core and Edge are fronted respectively by the Riverbed SteelHead WAN optimization device, to deliver the performance required.

The diagram below gives an overview of how the entire SteelFusion network architecture is like:

Riverbed SteelFusion Overall Solution 2 Continue reading

No Flash in the pan

The storage networking market now is teeming with flash solutions. Consumers are probably sick to their stomach getting a better insight which flash solution they should be considering. There are so much hype, fuzz and buzz and like a swarm of bees, in the chaos of the moment, there is actually a calm and discerning pattern slowly, but surely, emerging. Storage networking guys would probably know this thing well, but for the benefit of the other readers, how we view flash (and other solid state storage) becomes clear with the picture below: Flash performance gap

(picture courtesy of  http://electronicdesign.com/memory/evolution-solid-state-storage-enterprise-servers)

Right at the top, we have the CPU/Memory complex (labelled as Processor). Our applications, albeit bytes and pieces of them, run in this CPU/Memory complex.

Therefore, we can see Pattern #1 showing up. Continue reading

The Prophet has arrived

Early last week, I had a catch up with my friend. He was excited to share with me the new company he just joined. It was ProphetStor. It was a catchy name and after our conversation, I have decided to spend a bit of my weekend afternoon finding out more about the company and its technology.

From another friend at FalconStor, I knew of this company several months ago. Ex-FalconStor executives have ventured to found ProphetStor as the next generation of storage resource orchestration engine. And it has found a very interesting tack to differentiate from the many would-bes of so-called “software-defined storage” leaders. ProphetStor made their early appearance at the OpenStack Summit in Hong Kong back in November last year, positioning several key technologies including OpenStack Cinder, SNIA CDMI (Cloud Data Management Interface) and SMI-S (Storage Management Initiative Specification) to provide federation of storage resources discovery, provisioning and automation. 

The federation of storage resources and services solution is aptly called ProphetStor Federator. The diagram I picked up from the El Reg article presents the Federator working with different OpenStack initiatives quite nicely below:  There are 3 things that attracted me to the uniqueness of ProphetStor.

1. The underlying storage resources, be it files, objects, or blocks, can be presented and exposed as Cinder-style volumes.

2. The ability to define the different performance capabilities and SLAs (IOPS, throughput and latency) from the underlying storage resources and matching them to the right application requirements.

3. The use of SNIA of SMI-S and CDMI Needless to say that the Federator software will abstract the physical and logical structures of any storage brands or storage architectures, giving it a very strong validation of the “software-defined storage (SDS)” concept.

While the SDS definition is still being moulded in the marketplace (and I know that SNIA already has a draft SDS paper out), the ProphetStor SDS concept does indeed look similar to the route taken by EMC ViPR. The use of the control plane (ProphetStor Federator) and the data plane (underlying physical and logical storage resource) is obvious.

I wrote about ViPR many moons ago in my blog and I see ProphetStor as another hat in the SDS ring. I grabbed the screenshot (below) from the ProphetStor website which I thought did beautifully explained what ProphetStor is from 10,000 feet view.

ProphetStor How it works

The Cinder-style volume is a class move. It preserves the sanctity of many enterprise applications which still need block storage volumes but now it comes with a twist. These block storage volumes now will have different capability and performance profiles, tagged with the relevant classifications and SLAs.

And this is where SNIA SMI-S discovery component is critical because SMI-S mines these storage characteristics and presents them to the ProphetStor Federator for storage resource classification. For storage vendors that do not have SMI-S support, ProphetStor can customize the relevant interfaces to the proprietary API to discover the storage characteristics.

On the north-end, SNIA CDMI works with the ProphetStor Federator’s Offer & Provisioning functions to bundle wrap various storage resources for the cloud and other traditional storage network architectures.

I have asked my friend for more technology deep-dive materials (he has yet to reply me) of ProphetStor to ascertain what I have just wrote. (Simon, you have to respond to me!)

This is indeed very exciting times knowing ProphetStor as one of the early leaders in the SDS space. And I like to see ProphetStor go far with this.

Now let us pray … because the prophet has arrived.

SMB Witness Protection Program

No, no, FBI is not in the storage business and there are no witnesses to protect.

However, SMB 3.0 has introduced a RPC-based mechanism to inform the clients of any state change in the SMB servers. Microsoft calls it Service Witness Protocol [SWP], and its objective is provide a much faster notification service allow the SMB 3.0 clients to do a failover. In previous SMB 1.0 and even in SMB 2.x, the SMB clients rely on time-out services. The time-out services, either SMB or TCP, could take up as much as 30-45 seconds, and this creates a high latency that is disruptive to enterprise applications.

SMB 3.0, as mentioned in my previous post, had a total revamp, and is now enterprise ready. In what Microsoft calls “Continuously Available” File Service, the SMB 3.0 supports clustered or scale-out file servers. The SMB shares must be shared as “Continuously Available” shares and mapped to SMB 3.0 clients. As shown in the diagram below (provided by SNIA’s webinar),

SMB 3.0 CA Shares

Client A mapping to Server 1 share (\\srv1\CAshr). Client A has a share “handle” that establishes a connection with a corresponding state of the session. The state of the session is synchronously kept consistent with a corresponding state in Server 2.

The Service Witness Protocol is not responsible for the synchronization of the states in the SMB file server cluster. Microsoft has left the HA/cluster/scale-out capability to the proprietary technology method of the NAS vendor. However, SWP regularly observes the status of all services under its watch. Continue reading

SMB on steroids but CIFS lord isn’t pleased

I admit it!

I am one of the guilty parties who continues to use CIFS (Common Internet File System) to represent the Windows file sharing protocol. And a lot of vendors continue to use the “CIFS” word loosely without knowing that it was a something from a bygone era. One of my friends even pronounced it as “See Fist“, which sounded even funnier when he said it. (This is for you Adrian M!)

And we couldn’t be more wrong because we shouldn’t be using the CIFS word anymore. It is so 90’s man! And the tell-tale signs have already been there but most of us chose to ignore it with gusto. But a recent SNIA Webinar titled “SMB 3.0 – New opportunities for Windows Environment” aims to dispel our incompetence and change our CIFS-venture to the correct word – SMB (Server Message Block).

A selfie photo of Dennis Chapman, Senior Technical Director for Microsoft Solutions at NetApp from the SNIA webinar slides above, wants to inform all of us that … SMB History Continue reading

Has Object Storage become the everything store?

I picked up a copy of latest Brad Stone’s book, “The Everything Store: Jeff Bezos and the Age of Amazon at the airport on my way to Beijing last Saturday. I have been reading it my whole time I have been in Beijing, reading in awe about the turbulent ups and downs of Amazon.com.

The Everything Store cover

In its own serendipitous ways, Object-based Storage Devices (OSDs) have been floating in my universe in the past few weeks. Seems like OSDs have been getting a lot of coverage lately and suddenly, while in the shower, I just had an epiphany!

Are storage vendors now positioning Object-based Storage Devices (OSDs) as Everything Store?

Continue reading

HDS HNAS kicks ass

I am dusting off the cobwebs of my blog. After almost 3 months of inactivity, (and trying to avoid the Social Guidelines Media of my present company), I have bolstered enough energy to start writing again. I am tired, and I am finishing off the previous engagements prior to joining HDS. But I am glad those are coming to an end, with the last job in Beijing next week.

So officially, I will be in HDS as of November 4, 2013 . And to get into my employer’s good books, I think I should start with something that HDS has proved many critics wrong. The notion that HDS is poor with NAS solutions has been dispelled with a recent benchmark report from SPECSfs, especially when it comes to NFS file performance. HDS has never been much of a big shouter about their HNAS, even back in the days of OEM with BlueArc. The gap period after the BlueArc acquisition was also, in my opinion, quiet unless it was the gestation period for this Kick-Ass announcement a couple of weeks ago. Here is one of the news circling in the web, from the ever trusty El-Reg.

HDS has never been big shouting like the guys, like EMC and NetApp, who have plenty of marketing dollars to spend. EMC Isilon and NetApp C-Mode have always touted their mighty SPECSfs numbers, usually with a high number of controllers or nodes behind the benchmarks. More often than not, many readers would probably focus more on the NFSops/sec figures rather than the number of heads required to generate the figures.

Unaware of this HDS announcement, I was already asking myself that question about NFSops/sec per SINGLE controller head. So, on September 26 2013, I did a table comparing some key participants of the SPECSfs2008_nfs.v3 and here is the table:

SPECSfs2008_nfs.v3-26-Sept-2013In the last columns of the 2 halves (which I have highlighted in Red), the NFSops/sec/single controller head numbers are shown. I hope that readers would view the performance numbers more objectively after reading this. Therefore, I let you make your own decisions but ultimately, they are what they are. One should not be over-mesmerized by the super million NFSops/sec until one looks under the hood. Secondly, one should also look at things more holistically such as $/NFSops/sec, $/ORT (overall response time), and $/GB/NFSops/managed and other relevant indicators of the systems sold.

But I do not want to take the thunder away from HDS’ HNAS platforms in this recent benchmark. In summary,

HDS SPECbench summaryTo reach a respectable number of 607,647 NFSops/sec with a sub-second response time is quite incredible. The ORT of 0.59 msecs should not be taken lightly because to eke just about a 0.1 msec is not easy. Therefore, reaching 0.5 millisecond is pretty awesome.

This is my first blog after 3 months. I am glad to be back and hopefully with the monkey off my back (I am referring to my outstanding engagements), I can concentrating on writing good stuff again. I know, I know … I still owe some people some entries. It’s great to be back 🙂