Computational Storage embodies Data Velocity and Locality

I have been earnestly observing the growth of Computational Storage for a number of years now.  It was known by several previous names, with the name “in-situ data processing” stuck with me the most. The Computational Storage nomenclature became more cohesive when SNIA® put together the CMSI (Compute Memory Storage Initiative) some time back. This initiative is where several standards bodies, the major technology players and several SIGs (special interest groups) in SNIA® collaborated to advance Computational Storage segment in the storage technology industry we know of today.

The use cases for Computational Storage are burgeoning, and the functional implementations of Computational Storage are becoming vital to tackle the explosive data tsunami. In 2018 IDC, in its Worldwide Global Datasphere Forecast 2021-2025 report, predicted that the world will have 175 ZB (zettabytes) of data. That number, according to hearsay, has been revised to a heady figure of 250ZB, given the superlative rate data is being originated, spawned and more.

Computational Storage driving factors

If we take the Computer Science definition of in-situ processing, Computational Storage can be distilled as processing data where it resides. In a nutshell, “Bring Compute closer to Storage“. This means that there is a processing unit within the storage subsystem which does not require the host CPU to perform processing. In a very simplistic manner, a RAID card in a storage array can be considered a Computational Storage device because it performs the RAID functions instead of the host CPU. But this new generation of Computational Storage has much more prowess than just the RAID function in a RAID card.

There are many factors in Computational Storage that make a lot sense. Here are a few:

  1. Voluminous data inundate the centralized architecture of the cloud platforms and the enterprise systems today. Much of the data come from end point devices – mobile devices, sensors, IoT, point-of-sales, video cameras, et.al. Pre-processing the data at the origin data points can help filter the data, reduce the size to be processed centrally, and secure the data before they are ingested into the central data processing systems
  2. Real-time processing of the data at the moment the data is received gives the opportunity to create the Velocity of Data Analytics. Much of the data do not need to move to a central data processing system for analysis. Often in use cases like autonomous vehicles, fraud detection, recommendation systems, disaster alerts etc require near instantaneous responses. Performing early data analytics at the data origin point has tremendous advantages.
  3. Moore’s Law is waning. The CPU (central processing unit) is no longer the center of the universe. We are beginning to see CPU offloading technologies to augment the CPU’s duties such as compression, encryption, transcoding and more. SmartNICs, DPUs (data processing units), VPUs (visual processing units), GPUs (graphics processing units), etc have come forth to formulate a new computing paradigm.
  4. Freeing up central resources with Computational Storage also accelerates the overall distributed data processing in the whole data architecture. The CPU and the adjoining memory subsystem are less required to perform context switching caused by I/O interrupts as in most of the compute/storage architecture today. The total effect relieves the CPU and giving back more CPU cycles to perform higher processing tasks, resulting in faster performance overall.
  5. The rise of memory interconnects is enabling a more distributed computing fabric of data processing subsystems. The rising CXL (Compute Express Link™) interconnect protocol, especially after the Gen-Z annex, has emerged a force to be reckoned with. This rise of memory interconnects will likely strengthen the testimony of Computational Storage in the fast approaching future.

Computational Storage Deployment Models

SNIA Computational Storage Universe in 2019

Continue reading

Time to Conflate Storage with Data Services

Around the year 2016, I started to put together a better structure to explain storage infrastructure. I started using the word Data Services Platform before what it is today. And I formed a pictorial scaffold to depict what I wanted to share. This was what I made at that time.

Data Services Platform (circa 2016)- Copyright Heoh Chin Fah

One of the reasons I am bringing this up again is many of the end users and resellers still look at storage from the perspective of capacity, performance and price. And as if two plus two equals five, many storage pre-sales and architects reciprocate with the same type of responses that led to the deteriorated views of the storage technology infrastructure industry as a whole. This situation irks me. A lot.

Continue reading

HODLing Decentralized Storage is not zero sum

I have been dipping my toes into decentralized storage. I wrote about “Crossing the Chasm” last month where most early technologies have to experience to move into the mainstream adoption. I believe the same undertaking is going on for decentralized storage and the undercurrents are beginning to feel like a tidal wave. However, the clarion calls and the narratives around decentralized storage are beginning to sound the same after several months on researching the subject.

Salient points of decentralized storage

I have summarized a bunch of these arguments for decentralized storage. They are:

  • Democratization of cloud storage services separate from the hyperscaling behemoths of Web2
  • Inherent data security with default encryption, immutability and blockchain-ed. (most decentralized storage are blockchain-based. A few are not)
  • Data privacy with the security key for data decryption and authentication with the data owner(s)
  • No centralized control of data storage services, prices, market transparency and sovereignty
  • Green with more efficient energy consumption compared to Bitcoin
  • Data durability with data sharding creating no single point of failure and maintaining continuous data access services with geo content dispersal

Rocket fuel – The cryptos

Most early adoptions of a new technology require some sort of bliztscaling momentum to break free from the gravity of the old one. The cryptocurrencies pegged to many decentralized storage platforms are the rocket fuel to power the conversations and the narratives of the decentralized storage today. I probably counted over a hundred of these types of cryptocurrencies, with more jumping into the bandwagon as the gravy train moves ahead.

The table below is part of a TechTarget Search Storage article “7 Decentralized Storage Networks compared“. I found this article most enlightening.

7 Decentralized Storage Compared

Continue reading

Celebrating MinIO

Essentially MinIO is a web server …

I vaguely recalled Anand Babu Periasamy (AB as he is known), the CEO of MinIO saying that when I first met him in 2017. I was fresh “playing around” with MinIO and instantly I fell in love with software technology. Wait a minute. Object storage wasn’t supposed to be so easy. It was not supposed to be that simple to set up and use, but MinIO burst into my storage universe like the birth of the Infinity Stones. There was a eureka moment. And I was attending one of the Storage Field Days in the US shortly after my MinIO discovery in late 2017. What an opportunity!

I could not recall how I made the appointment to meeting MinIO, but I recalled myself taking an Uber to their cosy office on University Avenue in Palo Alto to meet. Through Andy Watson (one of the CTOs then), I was introduced to AB, Garima Kapoor, MinIO’s COO and his wife, Frank Wessels, Zamin (one of the business people who is no longer there) and Ugur Tigli (East Coast CTO) who was on the Polycom. I was awe struck.

Last week, MinIO scored a major Series B round funding of USD103 million. It was delayed by the pandemic because I recalled Garima telling me that the funding was happening in 2020. But I think the delay made it better, because the world now is even more ready for MinIO than ever before.

Continue reading

Rethinking data processing frameworks systems in real time

“Row, row, row your boat, gently down the stream…”

Except the stream isn’t gentle at all in the data processing’s new context.

For many of us in the storage infrastructure and data management world, the well known framework is storing and retrieve data from a storage media. That media could be a disk-based storage array, a tape, or some cloud storage where the storage media is abstracted from the users and the applications. The model of post processing the data after the data has safely and persistently stored on that media is a well understood and a mature one. Users, applications and workloads (A&W) process this data in its resting phase, retrieve it, work on it, and write it back to the resting phase again.

There is another model of data processing that has been bubbling over the years and now reaching a boiling point. Still it has not reached its apex yet. This is processing the data in flight, while it is still flowing as it passes through processing engine. The nature of this kind of data is described in one 2018 conference I chanced upon a year ago.

letgo marketplace processing numbers in 2018

  • * NRT = near real time

From a storage technology infrastructure perspective, this kind of data processing piqued my curiosity immensely. And I have been studying this burgeoning new data processing model in my spare time, and where it fits, bringing the understanding back into the storage infrastructure and data management side.

Continue reading

Storage Elephant Compute Birds

Data movement is expensive. Not just costs, but also latency and resources as well. Thus there were many narratives to move compute closer to where the data is stored because moving compute is definitely more economical than moving data. I borrowed the analogy of the 2 animals from some old NetApp® slides which depicted storage as the elephant, and compute as birds. It was the perfect analogy, because the storage is heavy and compute is light.

“Close up of a white Great Egret perching on top of an African Elephant aa Amboseli national park, Kenya”

Before the animals representation came about I used to use the term “Data locality, Data Mobility“, because of past work on storage technology in the Oil & Gas subsurface data management pipeline.

Take stock of your data movement

I had recent conversations with an end user who has been paying a lot of dollars keeping their “backup” and “archive” in AWS Glacier. The S3 storage is cheap enough to hold several petabytes of data for years, because the IT folks said that the data in AWS Glacier are for “backup” and “archive”. I put both words in quotes because they were termed as “backup” and “archive” because of their enterprise practice. However, the face of their business is changing. They are in manufacturing, oil and gas downstream, and the definitions of “backup” and “archive” data has changed.

For one, there is a strong demand for reusing the past data for various reasons and these datasets have to be recalled from their cloud storage. Secondly, their data movement activities still mimicked what they did in the past during their enterprise storage days. It was a classic lift-and-shift when they moved to the cloud, and not taking stock of  their data movements and the operations they ran on these datasets. Still ongoing, their monthly AWS cost a bomb.

Continue reading

The Starbucks model for Storage-as-a-Service

Starbucks™ is not a coffee shop. It purveys beyond coffee and tea, and food and puts together the yuppie beverages experience. The intention is to get the customers to stay as long as they can, and keep purchasing the Starbucks’ smorgasbord of high margin provisions in volume. Wifi, ambience, status, coffee or tea with your name on it (plenty of jokes and meme there), energetic baristas and servers, fancy coffee roasts and beans et. al. All part of the Starbucks™-as-a-Service pleasurable affair that intends to lock the customer in and have them keep coming back.

The Starbucks experience

Data is heavy and they know it

Unlike compute and network infrastructures, storage infrastructures holds data persistently and permanently. Data has to land on a piece of storage medium. Coupled that with the fact that data is heavy, forever growing and data has gravity, you have a perfect recipe for lock-in. All storage purveyors, whether they are on-premises data center enterprise storage or public cloud storage, and in between, there are many, many methods to keep the data chained to a storage technology or a storage service for a long time. The storage-as-a-service is like tying the cow to the stake and keeps on milking it. This business model is very sticky. This stickiness is also a lock-in mechanism.

Continue reading

What the heck is Storage Modernization?

We often hear the word “modernization” thrown around these days. The push is to get the end user to refresh their infrastructure, and the storage infrastructure market is rife with modernization word. Is your storage ripe for “modernization“?

Many possibilities to modernize storage

To modernize, it has to be relative to legacy storage hardware, and the operating environment that came with it. But if the so-called “legacy” still does the job, should you modernize?

Big Data is right

When the word “Big Data” came into prominence a while back, it stirred the IT industry into a frenzy. At one point, Apache Hadoop became the poster elephant (pun intended) for this exciting new segment. So many Vs came out, but I settled with 4 Vs as the framework of my IT conversations. The 4Vs we often hear are:

  • Volume
  • Velocity
  • Variety
  • Veracity

Continue reading

Data Sovereignty – A boon or a bane?

Data across borders – Data Sovereignty

I really did not want to write Data Sovereignty in the way I have written it now. I wanted to write it in a happy manner, but as recent circumstances appeared, the outlook began to dim. I apologize if my commentary is bleak.

Last week started very well. I was preparing for the iXsystems™ + Nextcloud webinar on Wednesday, August 25th 2021. After talking to the wonderful folks at Nextcloud (Thanks Markus, Uwe and Maxime!), the central theme of the webinar was on Data Sovereignty and Data Control. The notion of GDPR (General Data Protection Regulation) has already  permeated into EU (European Union) entities, organizations and individuals alike, and other sovereign states around the world are following suit. Prominent ones on my radar in the last 2 years were the California Consumer Privacy Act (CCPA) and Vietnam Personal Data Protection Act 2020.

Continue reading

SSOT of Files

[ This is part two of “Where are your files living now?”. You can read Part One here ]

Data locality, Data mobility“. It was a term I like to use a lot when describing about data consolidation, leading to my mention about files and folders, and where they live in my previous blog. The thinking of where the files and folders are now as in everywhere as they can be in a plethora of premises stretches the premise of SSOT (Single Source of Truth). And this expatriation of files with minimal checks and balances disturbs me.

A year ago, just before I joined iXsystems, I was given Google® embargoed news, probably a week before they announced BigQuery Omni. Then I was interviewed by Enterprise IT News, a local Malaysian technology news portal to provide an opinion quote. This was what I quoted:

“’The data warehouse in the cloud’ managed services of Big Query is underpinned by Google® Anthos, its hybrid cloud infra and service management platform based on GKE (Google® Kubernetes Engine). The containerised applications, both on-prem and in the multi-clouds, would allow Anthos to secure and orchestrate infra, services and policy management under one roof.”

I further quoted ” The data repositories remain in each cloud is good to address data sovereignty, data security concerns but it did not mention how it addresses “single source of truth” across multi-clouds.

Single Source of Truth – regardless of repositories

Continue reading