Hail Hydra!

The last of the Storage Field Day 6 on November 7th took me and the other delegates to NEC. There was an obvious, yet eerie silence among everyone about this visit. NEC? Are you kidding me?

NEC isn’t exactly THE exciting storage company in the Silicon Valley, yet I was pleasantly surprised with their HydraStorprowess. It is indeed quite a beast, with published numbers of backup throughput of 4PB/hour, and scales to 100PB of capacity. Most impressive indeed, and HydraStor deserves this blogger’s honourable architectural dissection.

HydraStor is NEC’s grid-based, scale-out storage platform with an object storage backend. The technology, powered by the DynamicStor ™ software, a distributed file system laid over the HydraStor grid architecture. At the same time, it has the DataRedux™ technology that provides the global in-line deduplication as the HydraStor ingests data for data protection, replication, archiving and WORM purposes. It is a massive data consolidation platform, storing gazillion loads of data (100PB you say?) for short-term and long-term retention and recovery.

The architecture is indeed solid, and its data availability goes beyond traditional RAID-level resiliency. HydraStor employs their proprietary erasure coding, called Distributed Resilient Data™. The resiliency knob can be configured to withstand 6 concurrent disks or nodes failure, but by default configured with a resiliency level of 3.

We can quickly deduce that DynamicStor™, DataRedux™ and Distributed Resilient Data™ are the technology pillars of HydraStor. How do they work, and how do they work together?

Let’s look a bit deeper into the HydraStor architecture.

HydraStor is made up of 2 types of nodes:

  • Accelerator Nodes
  • Storage Nodes

The Accelerator Nodes (AN) are the access nodes. They interface with the HydraStor front end, which could be CIFS, NFS or OST (Open Storage Technology). The AN nodes chunks the in-coming data and performs in-line deduplication at a very high speed. It can reach speed of 300TB/hour, which is blazingly fast!

The AN nodes also runs DynamicStor™, handling the performance heavy-lifting portion of HydraStor. The chunked data from the AN nodes are then passed on to the Storage Nodes (SN), where they are further “deduped in-line” to determined if the chunks are unique or not. It is a two-step inline deduplication process. Below is a diagram showing the ANs built above the SNs in the HydraStor grid architecture.

NEC AN & SN grid architecture

 

The HydraStor grid architecture is also a very scalable architecture, allow the dynamic scale-in and scale-out of both ANs and SNs. AN nodes and SN nodes can be added or removed into the system, auto-configuring and auto-optimizing while everything stays online. This capability further strengthens the reliability and the resiliency of the HydraStor.

NEC Hydrastor dynamic topology

Moving on to DataRedux™. DataRedux™ is HydraStor’s global in-line data deduplication technology. It performs dedupe at the sub-file level, with variable length window. This is performed at the AN nodes and the SN nodes level,chunking and creating unique hash values. All unique chunks are further compressed with a modified LZ compression algorithm, shrinking the data to its optimized footprint on the disk storage. To maintain the global in-line deduplication, the hash table is available across the HydraStor cluster.

NEC Deduplication & Compression

The unique data chunk resulting from deduplication and compression are then written to disks using the configured Distributed Resilient Data™ (DRD) algorithm, at its set resiliency level.

At the junction of DRD, with erasure coding parity, the data is broken up into multiples of fragments and assigned a parity to a grouping of fragments. If the resiliency level is set to 3 (the default), the data is broken into 12 pieces, 9 data fragments + 3 parity fragments. The 3 parity fragments corresponds to the resiliency level of 3. See diagram below of the 12 fragments spread across a group of selected disks in the storage pool of the Storage Nodes.

NEC DRD erasure coding on Storage Nodes

 

If the HydraStor experiences a failure in the disks or nodes, and has resulted in the loss of a fragment or fragments, the DRD self-healing function will auto-rebuild and auto-reconfigure the recovered fragments in another set of disks, maintaining the level of 3 parities.

The resiliency level, as mentioned earlier, can be set up to 6, boosting the HydraStor survival factor of 6 disks or nodes failure in the grid. See below of how the autonomous DRD recovery works:

NEC Autonomous Data recovery

Despite lacking the razzle dazzle of most Silicon Valley storage startups and upstarts, credit be given where credit is due. NEC HydraStor is indeed a strong show stopper.

However, in a market that is as fickle as storage, deduplication solutions such as HydraStor, EMC Data Domain, and HP StoreOnce, are being superceded by Copy Data Management technology, touted by Actifio. It was rumoured that EMC restructured their entire BURA (Backup Recovery Archive) division to DPAD (Data Protection and Availability Division) to go after the burgeoning copy data management market.

It would be good if NEC can take notice and turn their HydraStor “supertanker” towards the Copy Data Management market. That would be something special to savour.

P/S: NEC. Sorry about the title. I just couldn’t resist it 😉

No Flash in the pan

The storage networking market now is teeming with flash solutions. Consumers are probably sick to their stomach getting a better insight which flash solution they should be considering. There are so much hype, fuzz and buzz and like a swarm of bees, in the chaos of the moment, there is actually a calm and discerning pattern slowly, but surely, emerging. Storage networking guys would probably know this thing well, but for the benefit of the other readers, how we view flash (and other solid state storage) becomes clear with the picture below: Flash performance gap

(picture courtesy of  http://electronicdesign.com/memory/evolution-solid-state-storage-enterprise-servers)

Right at the top, we have the CPU/Memory complex (labelled as Processor). Our applications, albeit bytes and pieces of them, run in this CPU/Memory complex.

Therefore, we can see Pattern #1 showing up. Continue reading

SMB Witness Protection Program

No, no, FBI is not in the storage business and there are no witnesses to protect.

However, SMB 3.0 has introduced a RPC-based mechanism to inform the clients of any state change in the SMB servers. Microsoft calls it Service Witness Protocol [SWP], and its objective is provide a much faster notification service allow the SMB 3.0 clients to do a failover. In previous SMB 1.0 and even in SMB 2.x, the SMB clients rely on time-out services. The time-out services, either SMB or TCP, could take up as much as 30-45 seconds, and this creates a high latency that is disruptive to enterprise applications.

SMB 3.0, as mentioned in my previous post, had a total revamp, and is now enterprise ready. In what Microsoft calls “Continuously Available” File Service, the SMB 3.0 supports clustered or scale-out file servers. The SMB shares must be shared as “Continuously Available” shares and mapped to SMB 3.0 clients. As shown in the diagram below (provided by SNIA’s webinar),

SMB 3.0 CA Shares

Client A mapping to Server 1 share (\\srv1\CAshr). Client A has a share “handle” that establishes a connection with a corresponding state of the session. The state of the session is synchronously kept consistent with a corresponding state in Server 2.

The Service Witness Protocol is not responsible for the synchronization of the states in the SMB file server cluster. Microsoft has left the HA/cluster/scale-out capability to the proprietary technology method of the NAS vendor. However, SWP regularly observes the status of all services under its watch. Continue reading

Has Object Storage become the everything store?

I picked up a copy of latest Brad Stone’s book, “The Everything Store: Jeff Bezos and the Age of Amazon at the airport on my way to Beijing last Saturday. I have been reading it my whole time I have been in Beijing, reading in awe about the turbulent ups and downs of Amazon.com.

The Everything Store cover

In its own serendipitous ways, Object-based Storage Devices (OSDs) have been floating in my universe in the past few weeks. Seems like OSDs have been getting a lot of coverage lately and suddenly, while in the shower, I just had an epiphany!

Are storage vendors now positioning Object-based Storage Devices (OSDs) as Everything Store?

Continue reading

HDS HNAS kicks ass

I am dusting off the cobwebs of my blog. After almost 3 months of inactivity, (and trying to avoid the Social Guidelines Media of my present company), I have bolstered enough energy to start writing again. I am tired, and I am finishing off the previous engagements prior to joining HDS. But I am glad those are coming to an end, with the last job in Beijing next week.

So officially, I will be in HDS as of November 4, 2013 . And to get into my employer’s good books, I think I should start with something that HDS has proved many critics wrong. The notion that HDS is poor with NAS solutions has been dispelled with a recent benchmark report from SPECSfs, especially when it comes to NFS file performance. HDS has never been much of a big shouter about their HNAS, even back in the days of OEM with BlueArc. The gap period after the BlueArc acquisition was also, in my opinion, quiet unless it was the gestation period for this Kick-Ass announcement a couple of weeks ago. Here is one of the news circling in the web, from the ever trusty El-Reg.

HDS has never been big shouting like the guys, like EMC and NetApp, who have plenty of marketing dollars to spend. EMC Isilon and NetApp C-Mode have always touted their mighty SPECSfs numbers, usually with a high number of controllers or nodes behind the benchmarks. More often than not, many readers would probably focus more on the NFSops/sec figures rather than the number of heads required to generate the figures.

Unaware of this HDS announcement, I was already asking myself that question about NFSops/sec per SINGLE controller head. So, on September 26 2013, I did a table comparing some key participants of the SPECSfs2008_nfs.v3 and here is the table:

SPECSfs2008_nfs.v3-26-Sept-2013In the last columns of the 2 halves (which I have highlighted in Red), the NFSops/sec/single controller head numbers are shown. I hope that readers would view the performance numbers more objectively after reading this. Therefore, I let you make your own decisions but ultimately, they are what they are. One should not be over-mesmerized by the super million NFSops/sec until one looks under the hood. Secondly, one should also look at things more holistically such as $/NFSops/sec, $/ORT (overall response time), and $/GB/NFSops/managed and other relevant indicators of the systems sold.

But I do not want to take the thunder away from HDS’ HNAS platforms in this recent benchmark. In summary,

HDS SPECbench summaryTo reach a respectable number of 607,647 NFSops/sec with a sub-second response time is quite incredible. The ORT of 0.59 msecs should not be taken lightly because to eke just about a 0.1 msec is not easy. Therefore, reaching 0.5 millisecond is pretty awesome.

This is my first blog after 3 months. I am glad to be back and hopefully with the monkey off my back (I am referring to my outstanding engagements), I can concentrating on writing good stuff again. I know, I know … I still owe some people some entries. It’s great to be back 🙂

Novell Filr Technology Overview – Part 2

Part 1 of the Novell Filr Technology Overview was too heavy and I had to break up to share the feature of storage.

How will storage space look like to the different access methods or mobile device? Novell Filr does not deviate from the comfortable interface that is functionally similar to applications such as Dropbox. Under the guise of folders and files, the interface is a familiar one. It is called “MY FILES”.

But under the wraps of “MY FILES”, Novell Filr consolidates both Personal Storage and Net Folders locations under one roof. Here’s a look at “MY FILES” and how it consolidates various underlying file storage structure:

Continue reading

Novell Filr Technology Overview Part 1

I am like a kid opening presents on Christmas mornings today.

Reading and understanding the Novell Filr architecture is exciting with each feature revealing something different, some that may not be entirely unique, but something done simplified. Novell Filr has simplified a few things that are much more appreciated from storage guys like me. Let me share with you this technology learning session.

2 Key Features

First of all, I see the Novell Filr as a Secure Access Broker.

The Novell Filr provides file access, file sharing and file synchronization with multiple mobile devices. The mobility revolution in the likes of smart phones, tablets and other “connected” devices in our personal lives are changing our habits in the way we want information to be accessed, which I can summarize in 2 words – SIMPLE, UNINHIBITED. It is the lack of inhibition that scares the hell out of IT because IT is losing control, and corporations fear data leaks.

Novell Filr lets users access their home directories and network folders from their mobile devices. It lets the users synchronize their files with Windows and MacOS computers, regardless if these devices are internal of the company’s firewalled networks or external of it. Here’s a simple diagram of how Novell Filr defines its position as a Secure Access Broker.

Continue reading

The openness of Novell Filr technology

In the previous blog entry, I spoke about finally getting the opportunity look deeper into Novell Filr technology. As I continue my journey of exploration, I am already consolidating information about the other EFSS (Enterprise File Synchronization and Sharing) solutions out there.

Many corporate IT users are moving away from pedantic corporate IT control toward the seemingly easy to synchronize, easy to share, cloud-based services such as Dropbox and Box.net. This practice exposes a big hole in the corporate network, leaking data and files, and yet most corporate IT users are completely ignorant about such a irresponsible act.

Corporate IT users cannot blame IT for being a big A-hole because they keep tight controls of the network and security. It is their job to safeguard the company’s data and files for security, compliance and privacy reasons.

In the past 9-12 months, IT has certainly relaxed (probably “relented” is a better word) their uptight demeanour because they know they couldn’t stop the onslaught of BYOD (bring your own devices). The C-level and the senior management have practically demanded it and had forced their way to bring in their own smart devices and tablets to increase their productivity (Yeah, right!).

To alleviate data security concerns, MDM (Mobile Device Management) solutions are now hot items on the IT shopping list. Since we are talking about Novell, I also got to know that Novell also has an MDM solution called ZenWorks Mobile Management. Novell Zenworks is already well integrated with the proven Novell track record of user and identity management as well as integration with LDAP authentication systems such as Active Directory and eDirectory.

The collision of the BYOD phenomena and the need to securely share corporate data and files security conceives the Enterprise File Synchronization and Sharing market. Continue reading