Intelligent Data Movement and Data Placement dictate the future of AI Data Infrastructure

I have been reading a couple of articles over the weekend which started by placing the weights of outdated networking infrastructure slowing down AI ambitions. The 2 articles are:

I did not fully agree that networking infrastructure is the main inhibitor of AI ambitions per se. Not from the experiences and the present development in high performance networking of what I know so far. In fact, AI networking infrastructure has been growing leaps and bounds, laying down ultra-high throughput plumbing between the GPUs (inadvertently up the stack to the AI models and applications) and the data storage infrastructure.

The NVIDIA-heavy GPU compute infrastructure is of course, dominated by its own NVIDIA’s networking infrastructure. Both NVIDIA Spectrum (Ethernet) and Quantum (InfiniBand), BlueField (data processing units), ConnectX and LinkX are the mainstays of DGX Cloud, a big part of NVIDIA NCPs as well.

In fact, in one of DDN’s NCP customers, I have seen a 10-node DDN EXAscaler cluster deliver almost 1.1TB/sec read and 750GB/sec write throughput to the GPU compute cluster, out-of-the-box, all with 200Gbps networking gear.

Continue reading

Rethinking Storage OKRs for AI Data Infrastructure – Part 1

[ Preamble: This analysis focuses on my own journey as I incorporate my past experiences into this new market segment called AI Data Infrastructure, and gaining new ones.

There are many elements of HPC (High Performance Computing) at play here. Even though things such as speeds and feeds, features and functions crowd many conversations, as many enterprise storage vendors like to do, these conversations, in my opinion, are secondary. There are more vital and important operational technology and technical elements that an organization has to consider prudently, vis-a-vis to ROIs (returns of investments). They involve asking the hard questions beyond the marketing hype and fluff. I call these elements of consideration Storage Objectives and Key Results (OKRs) for AI Data Infrastructure.

I had to break this blog into 2 parts. It has become TL;DR-ish. This is Part 1 ]

I have just passed my 6-month anniversary with DDN. Coming into the High Performance Storage System (HPSS) market segment, with the strong focus on the distributed parallel filesystem of Lustre®, there was a high learning curve for me. I spend over 3 decades in Enterprise Storage, with some of the highest level of storage technologies there were in that market segment. And I have already developed my own approach to enterprise storage, based on the A.P.P.A.R.M.S.C.. That was already developed and honed from 25 years ago.

The rapid adoption of AI has created a technology paradigm shift. Artificial Intelligence (AI) came in and blurred many lines. It also has been evolving my thinking when it comes to storage for AI. There is also a paradigm shift in my thoughts, opinions and experiences as well.

AI has brought HPSS technologies like Lustre® in DDN EXAscaler platform , proven in the Supercomputing world, to a new realm – the AI Data Infrastructure market segment. On the other side, many enterprise storage vendors aspire to be a supplier to the AI Data Infrastructure opportunities as well. This convergence from the top storage performers for Supercomputing, in the likes of DDN, IBM® (through Storage Scale), HPE® (through Cray, which by-the-way often uses the open-source Lustre® edition in its storage portfolio), from the software-defined storage players in Weka IO, Vast Data, MinIO, and from the enterprise storage array vendors such as NetApp®, Pure Storage®, and Dell®.

[ Note that I take care not to name every storage vendor for AI because many either do OEMs or repacking and rebranding of SDS technology into their gear such as HPE® GreenLake for Files and Hitachi® IQ. You can Google to find out who the original vendors are for each respectively. There are others as well. ]

In these 3 simplified categories (HPSS, SDS, Enterprise Storage Array), I have begun to see a pattern of each calling its technology as an “AI Data Infrastructure”. At the same time, I am also developing a new set of storage conversations for the AI Data Infrastructure market segment, one that is based on OKRs (Objectives and Key Results) rather than just features, features and more features that many SDS and enterprise storage vendors like to tout. Here are a few thoughts that we should look for when end users are considering a high-speed storage solution for their AI journey.

AI Data Infrastructure

GPU is king

In the AI world, the GPU infrastructure is the deity at the altar. The utilization rate of the GPUs is kept at the highest to get the maximum compute infrastructure return-on-investment (ROI). Keeping the GPUs resolutely busy is a must. HPSS is very much part of that ecosystem.

These are a few OKRs I would consider the storage or data infrastructure for AI.

  • Reliability
  • Speed
  • Power Efficiency
  • Security

Let’s look at each one of them from the point of view of a storage practitioner like me.

Continue reading

The All-Important Storage Appliance Mindset for HPC and AI projects

I am strong believer of using the right tool to do the job right. I have said this before 2 years ago, in my blog “Stating the case for a Storage Appliance approach“. It was written when I was previously working for an open source storage company. And I am an advocate of the crafter versus assembler mindset, especially in the enterprise and high- performance storage technology segments.

I have joined DDN. Even with DDN that same mindset does not change a bit. I have been saying all along that the storage appliance model should always be the mindset for the businesses’ peace-of-mind.

My view of the storage appliance model began almost 25 years. I came into NAS systems world via Sun Microsystems®. Sun was famous for running NFS servers on general Sun Solaris servers. NFS services on Unix systems. Back then, I remember arguing with one of the Sun distributors about the tenets of running NFS over 100Mbit/sec Ethernet on Sun servers. I was drinking Sun’s Kool-Aid big time.

When I joined Network Appliance® (now NetApp®) in 2000, my worldview of putting software on general purpose servers changed. Network Appliance®, had one product family, the FAS700 (720, 740, 760) family. All NetApp® did was to serve NFS services in the beginning. They were the NAS filers and nothing else.

I was completed sold on the appliance way with NetApp®. Firstly, it was my very first time knowing such network storage services could be provisioned with an appliance concept. This was different from Sun. I was used to managing NFS exports on a Sun SPARCstation 20 to Unix clients in the network.

Secondly, my mindset began to shape that “you have to have the right tool to the job correctly and extremely well“. Well, the toaster toasts bread very well and nothing else. And the fridge (an analogy used by Dave Hitz, I think) does what it does very well too. That is what the appliance does. You definitely cannot grill a steak with a bread toaster, just like you can’t run an excellent, ultra-high performance storage services to serve the demanding AI and HPC applications on a general server platform. You have to have a storage appliance solution for High-Speed Storage.

That little Network Appliance® toaster award given out to exemplary employees stood vividly in my mind. The NetApp® tagline back then was “Fast, Simple, Reliable”. That solidifies my mindset for the high-speed storage in AI and HPC projects in present times.

DDN AI400X2 Turbo Appliance

Costs Benefits and Risks

I like to think about what the end users are thinking about. There are investments costs involved, and along with it, risks to the investments as well as their benefits. Let’s just simplify and lump them into Cost-Benefits-Risk analysis triangle. These variables come into play in the decision making of AI and HPC projects.

Continue reading

Storage IO straight to GPU

The parallel processing power of the GPU (Graphics Processing Unit) cannot be denied. One year ago, nVidia® overtook Intel® in market capitalization. And today, they have doubled their market cap lead over Intel®,  [as of July 2, 2021] USD$510.53 billion vs USD$229.19 billion.

Thus it is not surprising that storage architectures are changing from the CPU-centric paradigm to take advantage of the burgeoning prowess of the GPU. And 2 announcements in the storage news in recent weeks have caught my attention – Windows 11 DirectStorage API and nVidia® Magnum IO GPUDirect® Storage.

nVidia GPU

Exciting the gamers

The Windows DirectStorage API feature is only available in Windows 11. It was announced as part of the Xbox® Velocity Architecture last year to take advantage of the high I/O capability of modern day NVMe SSDs. DirectStorage-enabled applications and games have several technologies such as D3D Direct3D decompression/compression algorithm designed for the GPU, and SFS Sampler Feedback Streaming that uses the previous rendered frame results to decide which higher resolution texture frames to be loaded into memory of the GPU and rendered for the real-time gaming experience.

Continue reading

A Paean to NFS

It is certainly encouraging to see both NAS protocols, NFS and SMB, featured well in the latest VMware® vSAN 7 Update 1 release. The NFS v3 and v4.1 support was already in vSAN 7.0 when it was earlier announced as part of its Native File Services for vSAN. But some years ago, NFS was not always the primary storage protocol of choice. SAN protocols, Fibre Channel and iSCSI, were almost always designated to serve enterprise applications. At the client side, Windows became prominent, and the SMB/CIFS protocol dominated the landscape of the desktop. This further pushed NFS into the back closet.

NFS or Network File System has its naysayers. The venerable, but often maligned distributed network file protocol is 36 years today. In storage vendors such as NetApp®, VAST Data, Pure Storage FlashBlade, and Dell EMC Isilon, NFS is still positioned as the primary file protocol for manufacturing testers on the shop floor, EDA/eCAD applications, seismic and subsurface applications in Oil & Gas and many more. In another development, just like its presence in the vSAN Native Services,, NFS has also quietly embedded itself into many storage platforms to serve the data platform services within the respective framework itself.

And I have experienced NFS from the client side to the enterprise applications and more, and I take this opportunity to pay tribute.

NFS (Network File System) client server network

NFS (Network File System) client server network

Continue reading

The prudence needed for storage technology companies

Blitzscaling has been on my mind a lot. Ever since I discovered that word a while back, it has returned time and time again to fill my thoughts. In the wake of COVID-19, and in the mire of this devastating pandemic, is blitzscaling still the right strategy for this generation of storage technology, hyperconverged, data management and cloud storage startups?

What the heck is Blitzscaling? 

For the uninformed, here’s a video of Reid Hoffman, co-founder of Linked and a member of the Paypal mafia, explaining Blitzscaling.

Blitzscaling is about hyper growing, scaling ultra fast and rocketing to escape velocity, at the expense of things like management efficiency, financial prudence, profits and others. While this blog focuses on storage companies, blitzscaling is probably most recognizable in the massive expansion of Uber (and contraction) a few years ago. In the US, the ride hailing war is between Uber and Lyft, but over here in South East Asia, just a few years back, it was between Uber and Grab. In China it was Uber and Didi.

From the storage angle, 2 segments exemplified the blitzscaling culture between 2015 and 2020.

  • All Flash Startups
  • Hyper Converged Infrastructure Startups

Continue reading

Dell EMC Isilon is an Emmy winner!

[ Disclosure: I was invited by GestaltIT as a delegate to their Storage Field Day 19 event from Jan 22-24, 2020 in the Silicon Valley USA. My expenses, travel, accommodation and conference fees were covered by GestaltIT, the organizer and I was not obligated to blog or promote the vendors’ technologies presented at this event. The content of this blog is of my own opinions and views ]

And the Emmy® goes to …

Yes, the Emmy® goes to Dell EMC Isilon! It was indeed a well deserved accolade and an honour!

Dell EMC Isilon had just won the Technology & Engineering Emmy® Awards a week before Storage Field Day 19, for their outstanding pioneering work on the NAS platform tiering technology of media and broadcasting content according to business value.

A lasting true clustered NAS

This is not a blog to praise Isilon but one that instill respect to a real true clustered, scale-out file system. I have known of OneFS for a long time, but never really took the opportunity to really put my hands on it since 2006 (there is a story). So here is a look at history …

Back in early to mid-2000, there was a lot of talks about large scale NAS. There were several players in the nascent scaling NAS market. NetApp was the filer king, with several competitors such as Polyserve, Ibrix, Spinnaker, Panasas and the young upstart Isilon. There were also Procom, BlueArc and NetApp’s predecessor Auspex. By the second half of the 2000 decade, the market consolidated and most of these NAS players were acquired.

Continue reading

Storage Performance Considerations for AI Data Paths

The hype of Deep Learning (DL), Machine Learning (ML) and Artificial Intelligence (AI) has reached an unprecedented frenzy. Every infrastructure vendor from servers, to networking, to storage has a word to say or play about DL/ML/AI. This prompted me to explore this hyped ecosystem from a storage perspective, notably from a storage performance requirement point-of-view.

One question on my mind

There are plenty of questions on my mind. One stood out and that is related to storage performance requirements.

Reading and learning from one storage technology vendor to another, the context of everyone’s play against their competitors seems to be  “They are archaic, they are legacy. Our architecture is built from ground up, modern, NVMe-enabled“. And there are more juxtaposing, but you get the picture – “We are better, no doubt“.

Are the data patterns and behaviours of AI different? How do they affect the storage design as the data moves through the workflow, the data paths and the lifecycle of the AI ecosystem?

Continue reading

Whither HPC, HPE?

HPE is acquiring Cray Inc. Almost 3 years ago, HPE acquired SGI. Back in 2017, HPE partnered WekaIO, and invested big in the latest Series C funding of WekaIO just weeks ago.

Cray, SGI and WekaIO are all strong HPC technology companies. Given the strong uptick in the HPC market, especially commercial HPC, we cannot deny HPE’s ambition to become the top SuperComputing and HPC vendor in the industry. Continue reading

WekaIO controls their performance destiny

[Preamble: I have been invited by GestaltIT as a delegate to their Tech Field Day for Storage Field Day 18 from Feb 27-Mar 1, 2019 in the Silicon Valley USA. My expenses, travel and accommodation were covered by GestaltIT, the organizer and I was not obligated to blog or promote their technologies presented at this event. The content of this blog is of my own opinions and views]

I was first introduced to WekaIO back in Storage Field Day 15. I did not blog about them back then, but I have followed their progress quite attentively throughout 2018. 2 Storage Field Days and a year later, they were back for Storage Field Day 18 with a new CTO, Andy Watson, and several performance benchmark records.

Blowout year

2018 was a blowout year for WekaIO. They have experienced over 400% growth, placed #1 in the Virtual Institute IO-500 10-node performance challenge, and also became #1 in the SPEC SFS 2014 performance and latency benchmark. (Note: This record was broken by NetApp a few days later but at a higher cost per client)

The Virtual Institute for I/O IO-500 10-node performance challenge was particularly interesting, because it pitted WekaIO against Oak Ridge National Lab (ORNL) Summit supercomputer, and WekaIO won. Details of the challenge were listed in Blocks and Files and WekaIO Matrix Filesystem became the fastest parallel file system in the world to date.

Control, control and control

I studied WekaIO’s architecture prior to this Field Day. And I spent quite a bit of time digesting and understanding their data paths, I/O paths and control paths, in particular, the diagram below:

Starting from the top right corner of the diagram, applications on the Linux client (running Weka Client software) and it presents to the Linux client as a POSIX-compliant file system. Through the network, the Linux client interacts with the WekaIO kernel-based VFS (virtual file system) driver which coordinates the Front End (grey box in upper right corner) to the Linux client. Other client-based protocols such as NFS, SMB, S3 and HDFS are also supported. The Front End then interacts with the NIC (which can be 10/100G Ethernet, Infiniband, and NVMeoF) through SR-IOV (single root IO virtualization), bypassing the Linux kernel for maximum throughput. This is with WekaIO’s own networking stack in user space. Continue reading