Kubernetes Persistent Storage Managed Well

[ Disclosure: This is a StorPool Storage sponsored blog ]

StorPool Storage – Distributed Storage

There is a rapid adoption of Kubernetes in the enterprise and in the cloud. The push for digital transformation to modernize businesses for a cloud native world in the next decade has lifted both containerized applications and the Kubernetes container orchestration platform to an unprecedented level. The application landscape, especially the enterprise, is looking at Kubernetes to address these key areas:

  • Scale
  • High performance
  • Availability and Resiliency
  • Security and Compliance
  • Controllable Costs
  • Simplified

The Persistent Storage Question

Enterprise applications such as relational databases, email servers, and even the cloud native ones like NoSQL, analytics engines, demand a single data source of truth. Fundamentals properties such as ACID (atomicity, consistency, isolation, durability) and BASE (Basic Availability, Soft State, Eventual Consistency) have to have persistent storage as the foundational repository for the data. And thus, persistent storage have rallied under Container Storage Interface (CSI), and fast becoming a de facto standard for Kubernetes. At last count, there are more than 80 CSI drivers from 60+ storage and cloud vendors, each providing block-level storage to Kubernetes pods.

However, at this juncture, Kubernetes is still very engineering-centric. Persistent storage is equally as challenging, despite all the new developments and hype around it.

Continue reading

A Paean to NFS

It is certainly encouraging to see both NAS protocols, NFS and SMB, featured well in the latest VMware® vSAN 7 Update 1 release. The NFS v3 and v4.1 support was already in vSAN 7.0 when it was earlier announced as part of its Native File Services for vSAN. But some years ago, NFS was not always the primary storage protocol of choice. SAN protocols, Fibre Channel and iSCSI, were almost always designated to serve enterprise applications. At the client side, Windows became prominent, and the SMB/CIFS protocol dominated the landscape of the desktop. This further pushed NFS into the back closet.

NFS or Network File System has its naysayers. The venerable, but often maligned distributed network file protocol is 36 years today. In storage vendors such as NetApp®, VAST Data, Pure Storage FlashBlade, and Dell EMC Isilon, NFS is still positioned as the primary file protocol for manufacturing testers on the shop floor, EDA/eCAD applications, seismic and subsurface applications in Oil & Gas and many more. In another development, just like its presence in the vSAN Native Services,, NFS has also quietly embedded itself into many storage platforms to serve the data platform services within the respective framework itself.

And I have experienced NFS from the client side to the enterprise applications and more, and I take this opportunity to pay tribute.

NFS (Network File System) client server network

NFS (Network File System) client server network

Continue reading

Storage in a shiny multi-cloud space

The multi-cloud for infrastructure-as-a-service (IaaS) era is not here (yet). That is what the technology marketers want you to think. The hype, the vapourware, the frenzy. It is what they do. The same goes to technology analysts where they describe vision and futures, and the high level constructs and strategies to get there. The hype of multi-cloud is often thought of running applications and infrastructure services seamlessly in several public clouds such as Amazon AWS, Microsoft® Azure and Google Cloud Platform, and linking it to on-premises data centers and private clouds. Hybrid is the new black.

Multicloud connectivity to public cloud providers and on-premises private cloud

Multi-Cloud, on-premises, public and hybrid clouds

And the aspiration of multi-cloud is the right one, when it is truly ready. Gartner® wrote a high level article titled “Why Organizations Choose a Multicloud Strategy“. To take advantage of each individual cloud’s strengths and resiliency in respective geographies make good business sense, but there are many other considerations that cannot be an afterthought. In this blog, we look at a few of them from a data storage perspective.

In the beginning there was … 

For this storage dinosaur, data storage and compute have always coupled as one. In the mainframe DASD days. these 2 were together. Even with the rise of networking architectures and protocols, from IBM SNA, DECnet, Ethernet & TCP/IP, and Token Ring FC-SAN (sorry, this is just a joke), the SANs, the filers to the servers were close together, albeit with a network buffered layer.

A decade ago, when the public clouds started appearing, data storage and compute were mostly inseparable. There was demarcation of public clouds and private clouds. The notion of hybrid clouds meant public clouds and private clouds can intermix with on-premise computing and data storage but in almost all cases, this was confined to a single public cloud provider. Until these public cloud providers realized they were not able to entice the larger enterprises to move their IT out of their on-premises data centers to the cloud convincingly. So, these public cloud providers decided to reverse their strategy and peddled their cloud services back to on-prem. Today, Amazon AWS has Outposts; Microsoft® Azure has Arc; and Google Cloud Platform launched Anthos.

Continue reading

Persistent Storage could stifle Google Anthos multi-cloud ambitions

To win in the multi-cloud game, you have to be in your competitors’ cloud. Google Cloud has been doing that since they announced Google Anthos just over a year ago. They have been crafting their “assault”, starting with on-premises, and Anthos on AWS. Anthos on Microsoft® Azure is coming, currently in preview mode.

Google CEO Sundar Pichai announcing Google Anthos at Next ’19

BigQuery Omni conversation starter

2 weeks ago, whilst the Google Cloud BigQuery Omni announcement was still under wraps, local Malaysian IT portal Enterprise IT News sent me the embargoed article to seek my views and opinions. I have to admit that I was ignorant about the deeper workings of BigQuery, and haven’t fully gone through the works of Google Anthos as well. So I researched them.

Having done some small works on Qubida (defunct) and Talend several years ago, I have grasped useful data analytics and data enablement concepts, and so BigQuery fitted into my understanding of BigQuery Omni quite well. That triggered my interests to write this blog and meshing the persistent storage conundrum (at least for me it is something to be untangled) to Kubernetes, to GKE (Google Kubernetes Engine), and thus Anthos as well.

For discussion sake, here is an overview of BigQuery Omni.

An overview of Google Cloud BigQuery Omni on multiple cloud providers

My comments and views are in this EITN article “Google Cloud’s BigQuery Omni for Multi-cloud Analytics”.

Continue reading

Down the rabbit hole with Kubernetes Storage

Kubernetes is on fire. Last week VMware® released the State of Kubernetes 2020 report which surveyed companies with 1,000 employees and above. Results were not surprising as the adoptions of this nascent technology are booming. But persistent storage remained the nagging concern for the Kubernetes serving the infrastructure resources to applications instances running in the containers of a pod in a cluster.

The standardization of storage resources have settled with CSI (Container Storage Interface). Storage vendors have almost, kind of, sort of agreed that the API objects such as PersistentVolumes, PersistentVolumeClaims, StorageClasses, along with the parameters would be the way to request the storage resources from the Pre-provisioned Volumes via the CSI driver plug-in. There are already more than 50 vendor specific CSI drivers in Github.

Kubernetes and CSI initiative

Kubernetes and the CSI (Container Storage Interface) logos

The CSI plug-in method is the only way for Kubernetes to scale and keep its dynamic, loadable storage resource integration with external 3rd party vendors, all clamouring to grab a piece of this burgeoning demands both in the cloud and in the enterprise.

Continue reading

Falconstor Software Defined Data Preservation for the Next Generation

Falconstor® Software is gaining momentum. Given its arduous climb back to the fore, it is beginning to soar again.

Tape technology and Digital Data Preservation

I mentioned that long term digital data preservation is a segment within the data lifecycle which has merits and prominence. SNIA® has proved that this is a strong growing market segment through its 2007 and 2017 “100 Year Archive” surveys, respectively. 3 critical challenges of this long, long-term digital data preservation is to keep the archives

  • Accessible
  • Undamaged
  • Usable

For the longest time, tape technology has been the king of the hill for digital data preservation. The technology is cheap, mature, and many enterprises has built their long term strategy around it. And the pulse in the tape technology market is still very healthy.

The challenges of tape remain. Every 5 years or so, companies have to consider moving the data on the existing tape technology to the next generation. It is widely known that LTO can read tapes of the previous 2 generations, and write to it a generation before. The tape transcription process of migrating digital data for the sake of data preservation is bad because it affects the structural integrity and quality of the content of the data.

In my times covering the Oil & Gas subsurface data management, I have seen NOCs (national oil companies) with 500,000 tapes of all generations, from 1/2″ to DDS, DAT to SDLT, 3590 to LTO 1-7. And millions are spent to transcribe these tapes every few years and we have folks like Katalyst DM, Troika and more hovering this landscape for their fill.

Continue reading

The Falcon to soar again

One of the historical feats which had me mesmerized for a long time was the 14-year journey China’s imperial treasures took to escape the Japanese invasion in the early 1930s, sandwiched between rebellions and civil wars in China. More than 20,000 pieces of the imperial treasures took a perilous journey to the west and back again. Divided into 3 routes over a decade and four years, not a single piece of treasure was broken or lost. All in the name of preservation.

Today, that 20,000 over pieces live in perpetuity in 2 palaces – Beijing Palace Museum in China and National Palace Museum Taipei in Taiwan

Digital data preservation

Digital data preservation is on another end of the data lifecycle spectrum. More often than not, it is not the part that many pay attention to. In the past 2 decades, digital data has grown so much that it is now paramount to keep the data forever. Mind you, this is not the data hoarding kind but to preserve the knowledge and wisdom which is in the digital content of the data.

[ Note: If you are interested to know more about Data -> Information -> Knowledge -> Wisdom, check out my 2015 article on LinkedIn ]

SNIA (Storage Networking Industry Association) conducted 2 surveys – one in 2007 and another in 2017 – called the 100 Year Archive, and found that the requirement for preserving digital data has grown multiple folds over the 10 years. In the end, the final goal is to ensure that the perpetual digital contents are

  • Accessible
  • Undamaged
  • Usable

All at an affordable cost. Therefore, SNIA has the vision that the digital content must transcend beyond the storage medium, the storage system and the technology that holds it.

The Falcon reemerges

A few weeks ago, I had the privilege to speak with Falconstor® Software‘s David Morris (VP of Global Product Strategy & Marketing) and Mark Delsman (CTO). It was my first engagement with Falconstor® in almost 9 years! I wrote a piece of Falconstor® in my blog in 2011.

Continue reading

Dell EMC Isilon is an Emmy winner!

[ Disclosure: I was invited by GestaltIT as a delegate to their Storage Field Day 19 event from Jan 22-24, 2020 in the Silicon Valley USA. My expenses, travel, accommodation and conference fees were covered by GestaltIT, the organizer and I was not obligated to blog or promote the vendors’ technologies presented at this event. The content of this blog is of my own opinions and views ]

And the Emmy® goes to …

Yes, the Emmy® goes to Dell EMC Isilon! It was indeed a well deserved accolade and an honour!

Dell EMC Isilon had just won the Technology & Engineering Emmy® Awards a week before Storage Field Day 19, for their outstanding pioneering work on the NAS platform tiering technology of media and broadcasting content according to business value.

A lasting true clustered NAS

This is not a blog to praise Isilon but one that instill respect to a real true clustered, scale-out file system. I have known of OneFS for a long time, but never really took the opportunity to really put my hands on it since 2006 (there is a story). So here is a look at history …

Back in early to mid-2000, there was a lot of talks about large scale NAS. There were several players in the nascent scaling NAS market. NetApp was the filer king, with several competitors such as Polyserve, Ibrix, Spinnaker, Panasas and the young upstart Isilon. There were also Procom, BlueArc and NetApp’s predecessor Auspex. By the second half of the 2000 decade, the market consolidated and most of these NAS players were acquired.

Continue reading

Paradigm shift of Dev to Storage Ops

[ Disclosure: I was invited by GestaltIT as a delegate to their Storage Field Day 19 event from Jan 22-24, 2020 in the Silicon Valley USA. My expenses, travel, accommodation and conference fees were covered by GestaltIT, the organizer and I was not obligated to blog or promote the vendors’ technologies presented at the event. The content of this blog is of my own opinions and views ]

A funny photo (below) came up on my Facebook feed a couple of weeks back. In an honest way, it depicted how a developer would think (or the lack of thinking) about the storage infrastructure designs and models for the applications and workloads. This also reminded me of how DBAs used to diss storage engineers. “I don’t care about storage, as long as it is RAID 10“. That was aeons ago 😉

The world of developers and the world of infrastructure people are vastly different. Since cloud computing birthed, both worlds have collided and programmable infrastructure-as-code (IAC) have become part and parcel of cloud native applications. Of course, there is no denying that there is friction.

Welcome to DevOps!

The Kubernetes factor

Containerized applications are quickly defining the cloud native applications landscape. The container orchestration machinery has one dominant engine – Kubernetes.

In the world of software development and delivery, DevOps has taken a liking to containers. Containers make it easier to host and manage life-cycle of web applications inside the portable environment. It packages up application code other dependencies into building blocks to deliver consistency, efficiency, and productivity. To scale to a multi-applications, multi-cloud with th0usands and even tens of thousands of microservices in containers, the Kubernetes factor comes into play. Kubernetes handles tasks like auto-scaling, rolling deployment, computer resource, volume storage and much, much more, and it is designed to run on bare metal, in the data center, public cloud or even a hybrid cloud.

Continue reading