I took a week off blogging last week but the lazy days were inundated by bad news. A few more devastating ransomware attacks. This time, Colonial Pipeline in the US was hacked and its networks were shutdown by ransomware. These ransomware threats are never ending, and they are getting more damaging than ever. It is like trying to plug a leaking boat with your hands, and more leaks appear as you plug them.
More ransomware news hitting healthcare around the world last week:
We are forever chasing for a solution, forever losing because almost all technology defenses to protect the data against ransomware are reactive. Why is ransomware still such a big threat then? Time to rethink file security fundamentals.
It is a disaster. No matter what we do, the leaks and the cracks are appearing faster than we are fixing it. It is a global pandemic.
I am not talking about COVID-19, the pandemic that has affected our lives and livelihood for over a year. I am talking about the other pandemic – the compromise of security of data.
In the past 6 months, the data leaks, the security hacks, the ransomware scourge have been more devastating than ever. Here are a few big ones that happened on a global scale:
Fusion Pool excites me, but unfortunately this new key feature of OpenZFS is hardly talked about. I would like to introduce the Fusion Pool feature as iXsystems™ expands the TrueNAS® Enterprise storage conversations.
I would not say that this technology is revolutionary. Other vendors already have the similar concept of Fusion Pool. The most notable (to me) is NetApp® Flash Pool, and I am sure other enterprise storage vendors have the same. But this is a big deal (for me) for an open source file system in OpenZFS.
What is Fusion Pool (aka ZFS Allocation Classes)?
To understand Fusion Pool, we have to understand the basics of the ZFS zpool. A zpool is the aggregation (borrowing the NetApp® terminology) of vdevs (virtual devices), and vdevs are a collection of physical drives configured with the OpenZFS RAID levels (RAID-0, RAID-1, RAID-Z1, RAID-Z2, RAID-Z3 and a few nested RAID permutations). A zpool can start with one vdev, and new vdevs can be added on-the-fly, expanding the capacity of the zpool online.
There are several types of vdevs prior to Fusion Pool, and this is as of pre-TrueNAS® version 12.0. As shown below, these are the types of vdevs available to the zpool at present.
OpenZFS zpool and vdev types – Credit: Jim Salter and Arstechnica
Fusion Pool is a zpool that integrates with a new, special type of vdev, alongside other normal vdevs. This special vdev is designed to work with small data blocks between 4-16K, and is highly efficient in handling random reading and writing of these small blocks. This bodes well with the OpenZFS file system metadata blocks and other blocks of small files. And the random nature of the Read/Write I/Os works best with SSDs (can be read or write intensive SSDs).
Actually, Edge Computing is already here. It has been here on everyone’s lips for quite some time, but for me and for many others, Edge Computing is still a hodgepodge of many things. The proliferation of devices, IoT, sensor, end points being pulled into the ubiquitous term of Edge Computing has made the scope ever changing, and difficult to pin down. And it is this proliferation of edge devices that will generate voluminous amount of data. Obvious questions emerge:
How to do you store all the data?
How do you process all the data?
How do you derive competitive value from the data from these edge devices?
How do you securely transfer and share the data?
From the storage technology perspective, it might be easier to observe what are the traits of the data generated on the edge device. In this blog, we also observe what could some new storage technologies out there that could be part of the Edge Computing present and future.
Edge Computing overview – Cloud to Edge to Endpoint
Storage at the Edge
The mantra of putting compute as close to the data and processing it where it is stored is the main crux right now, at least where storage of the data is concerned. The latency to the computing resources on the cloud and back to the edge devices will not be conducive, and in many older settings, these edge devices in factory may not be even network enabled. In my last encounter several years ago, there were more than 40 interfaces, specifications and protocols, most of them proprietary, for the edge devices. And there is no industry wide standard for these edge devices too.
The multi-cloud for infrastructure-as-a-service (IaaS) era is not here (yet). That is what the technology marketers want you to think. The hype, the vapourware, the frenzy. It is what they do. The same goes to technology analysts where they describe vision and futures, and the high level constructs and strategies to get there. The hype of multi-cloud is often thought of running applications and infrastructure services seamlessly in several public clouds such as Amazon AWS, Microsoft® Azure and Google Cloud Platform, and linking it to on-premises data centers and private clouds. Hybrid is the new black.
Multi-Cloud, on-premises, public and hybrid clouds
And the aspiration of multi-cloud is the right one, when it is truly ready. Gartner® wrote a high level article titled “Why Organizations Choose a Multicloud Strategy“. To take advantage of each individual cloud’s strengths and resiliency in respective geographies make good business sense, but there are many other considerations that cannot be an afterthought. In this blog, we look at a few of them from a data storage perspective.
In the beginning there was …
For this storage dinosaur, data storage and compute have always coupled as one. In the mainframe DASD days. these 2 were together. Even with the rise of networking architectures and protocols, from IBM SNA, DECnet, Ethernet & TCP/IP, and Token Ring FC-SAN (sorry, this is just a joke), the SANs, the filers to the servers were close together, albeit with a network buffered layer.
A decade ago, when the public clouds started appearing, data storage and compute were mostly inseparable. There was demarcation of public clouds and private clouds. The notion of hybrid clouds meant public clouds and private clouds can intermix with on-premise computing and data storage but in almost all cases, this was confined to a single public cloud provider. Until these public cloud providers realized they were not able to entice the larger enterprises to move their IT out of their on-premises data centers to the cloud convincingly. So, these public cloud providers decided to reverse their strategy and peddled their cloud services back to on-prem. Today, Amazon AWS has Outposts; Microsoft® Azure has Arc; and Google Cloud Platform launched Anthos.
It is easy to kick someone who is down. Bad news have stronger ripple effects than the good ones. Intel® is going through a rough patch, and perhaps the worst one so far. They delayed their 7nm manufacturing process, one which could have given Intel® the breathing room in the CPU war with rival AMD. And this delay has been pushed back to 2021, possibly 2022.
Intel Apple Collaboration and Partnership started in 2005
If we look deeper (and I am sure you have), all these negative news were related to their processors. Intel® is much, much more than that.
Their Optane™ storage prowess
I have years of association with the folks at Intel® here in Malaysia dating back 20 years. And I hardly see Intel® beating it own drums when it comes to storage technologies but they are beginning to. The Optane™ revolution in storage, has been a game changer. Optane™ enables the implementation of persistent memory or storage class memory, a performance tier that sits between DRAM and the SSD. The speed and more notable the latency of Optane™ are several times faster than the Enterprise SSDs.
Intel pyramid of tiers of storage medium
If you want to know more about Optane™’s latency and speed, here is a very geeky article from Intel®:
3D Xpoint, the Phase Change Memory technology behind Optane™ was from the joint venture between Intel® and Micron®. That partnership was dissolved in 2019, but it has not diminished the momentum of next generation Optane™. Alder Stream and Barlow Pass are going to be Gen-2 SSD and Persistent Memory DC DIMM respectively. A screenshot of the Optane™ roadmap appeared in Blocks & Files last week.
[ Disclosure: I was invited by GestaltIT as a delegate to their Storage Field Day 19 event from Jan 22-24, 2020 in the Silicon Valley USA. My expenses, travel, accommodation and conference fees were covered by GestaltIT, the organizer and I was not obligated to blog or promote the vendors’ technologies presented at this event. The content of this blog is of my own opinions and views ]
And the Emmy® goes to …
Yes, the Emmy® goes to Dell EMC Isilon! It was indeed a well deserved accolade and an honour!
This is not a blog to praise Isilon but one that instill respect to a real true clustered, scale-out file system. I have known of OneFS for a long time, but never really took the opportunity to really put my hands on it since 2006 (there is a story). So here is a look at history …
Back in early to mid-2000, there was a lot of talks about large scale NAS. There were several players in the nascent scaling NAS market. NetApp was the filer king, with several competitors such as Polyserve, Ibrix, Spinnaker, Panasas and the young upstart Isilon. There were also Procom, BlueArc and NetApp’s predecessor Auspex. By the second half of the 2000 decade, the market consolidated and most of these NAS players were acquired.
[ Disclosure: I was invited by GestaltIT as a delegate to their Storage Field Day 19 event from Jan 22-24, 2020 in the Silicon Valley USA. My expenses, travel, accommodation and conference fees were covered by GestaltIT, the organizer and I was not obligated to blog or promote the vendors’ technologies presented at the event. The content of this blog is of my own opinions and views ]
“Cheap and deep“, “Race to Zero” were some of the less storied calls I have come across when discussing about object storage, and it was really de-valuing the merits of object storage as vendors touted their superficial glory of being in the IDC Marketscape for Object-based Storage 2019.
Almost every single conversation I had in the past 3 years was either explaining what object storage is or “That is cheap storage right?”
[ Disclosure: I was invited by GestaltIT as a delegate to their Storage Field Day 19 event from Jan 22-24, 2020 in the Silicon Valley USA. My expenses, travel, accommodation and conference fees were covered by GestaltIT, the organizer and I was not obligated to blog or promote the vendors’ technologies presented at the event. The content of this blog is of my own opinions and views ]
A funny photo (below) came up on my Facebook feed a couple of weeks back. In an honest way, it depicted how a developer would think (or the lack of thinking) about the storage infrastructure designs and models for the applications and workloads. This also reminded me of how DBAs used to diss storage engineers. “I don’t care about storage, as long as it is RAID 10“. That was aeons ago 😉
The world of developers and the world of infrastructure people are vastly different. Since cloud computing birthed, both worlds have collided and programmable infrastructure-as-code (IAC) have become part and parcel of cloud native applications. Of course, there is no denying that there is friction.
Containerized applications are quickly defining the cloud native applications landscape. The container orchestration machinery has one dominant engine – Kubernetes.
In the world of software development and delivery, DevOps has taken a liking to containers. Containers make it easier to host and manage life-cycle of web applications inside the portable environment. It packages up application code other dependencies into building blocks to deliver consistency, efficiency, and productivity. To scale to a multi-applications, multi-cloud with th0usands and even tens of thousands of microservices in containers, the Kubernetes factor comes into play. Kubernetes handles tasks like auto-scaling, rolling deployment, computer resource, volume storage and much, much more, and it is designed to run on bare metal, in the data center, public cloud or even a hybrid cloud.
[ Disclosure: I was invited by GestaltIT as a delegate to their Storage Field Day 19 event from Jan 22-24, 2020 in the Silicon Valley USA. My expenses, travel, accommodation and conference fees were covered by GestaltIT, the organizer and I was not obligated to blog or promote the vendors’ technologies presented at this event. The content of this blog is of my own opinions and views ]
Cloud computing will have challenges processing data at the outer reach of its tentacles. Edge Computing, as it melds with the Internet of Things (IoT), needs a different approach to data processing and data storage. Data generated at source has to be processed at source, to respond to the event or events which have happened. Cloud Computing, even with 5G networks, has latency that is not sufficient to how an autonomous vehicle react to pedestrians on the road at speed or how a sprinkler system is activated in a fire, or even a fraud detection system to signal money laundering activities as they occur.
Furthermore, not all sensors, devices, and IoT end-points are connected to the cloud at all times. To understand this new way of data processing and data storage, have a look at this video by Jay Kreps, CEO of Confluent for Kafka® to view this new perspective.
Data is continuously and infinitely generated at source, and this data has to be compiled, controlled and consolidated with nanosecond precision. At Storage Field Day 19, an interesting open source project, Pravega, was introduced to the delegates by DellEMC. Pravega is an open source storage framework for streaming data and is part of Project Nautilus.
The data generated at source (end-points, sensors, devices) is serialized, timestamped (as event occurs), continuous and infinite. These are the properties of a time series data stream, and to make sense of the streaming data, new data formats such as Avro, Parquet, Orc pepper the landscape along with the more mature JSON and XML, each with its own strengths and weaknesses.
You can learn more about these data formats in the 2 links below:
Many time series projects started as DIY projects in many organizations. And many of them are still DIY projects in production systems as well. They depend on tribal knowledge, and these databases are tied to an unmanaged storage which is not congruent to the properties of streaming data.
At the storage end, the technologies today still rely on the SAN and NAS protocols, and in recent years, S3, with object storage. Block, file and object storage introduce layers of abstraction which may not be a good fit for streaming data.