Rethinking Storage OKRs for AI Data Infrastructure – Part 2

[ Preamble: This analysis focuses on my own journey as I incorporate my experiences into this new market segment called AI Data Infrastructure. There are many elements of HPC (High Performance Computing) at play here. Even though things such as speeds and feeds, features and functions crowd many conversations, as many enterprise storage vendors do, these conversations, in my opinion, are secondary. There are more vital and important operational technology and technical elements that an organization has to consider prudently. They involve asking the hard questions beyond the marketing hype and fluff. I call these elements of consideration Storage Objectives and Key Results (OKRs) for AI Data Infrastructure.

I had to break this blog into 2 parts. It has become TL;DR-ish. This is Part 2 ]

This is a continuation from Part 1 of my blog last week. I spoke about the 4 key OKRs (Objectives and Key Results) we look at from the storage point-of-view with regards to AI data infrastructure. To recap, they are:

  • Reliability
  • Speed
  • Power Efficiency
  • Security

Power Efficiency

Patrick Kennedy of ServeTheHome (STH) fame, astutely explained the new generation of data center racks required by NVIDIA® and AMD® in his article “Here is how much Power we expect AMD® and NVIDIA® racks will need in 2027” 2 weeks ago. Today, the NVIDIA® GB200 NVL72 ORv3 rack design takes up 120kW per rack. That’s an insane amount of power consumption that can only go up in the next 2-3 years. That is why power efficiency must be an OKR metric to be deeply evaluated.

When you operate a GPU compute farm, whether it is 8 GPUs or 16,384 GPUs, keep operations tight is vital to ensure that maximum power efficiency is right up there with the rest of the operational OKRs. The element of power consumption becomes a cost factor in the data infrastructure design for AI.

2 very important units of measurements I would look into, and that have become valuable OKRs to achieve are Performance per Watt (Performance/Watt) and Performance per Rack Unit (Performance/RU).

Power Efficiency in Data Center is a Must.

Continue reading

OpenZFS dRAID has risen!

We await the 3rd iteration of TrueNAS® SCALE 23.10 codenamed Cobia. 23.10 means October 2023, and we are within weeks of its announcement.

One of the best features I have been waiting for is dRAID or distributed RAID. I have written about it dRAID a couple of years back. It was announced in 2021, in OpenZFS 2.1, but we have not seen an commercial implementation of dRAID … until iXsystems™ TrueNAS® SCALE 23.10. Why am I so excited?

I have followed the technology since Isaac Huang presented dRAID at the OpenZFS Summit in 2015. Through the years ahead, I have seen Isaac presenting dRAID at the summits, and with each iteration, dRAID got closer and closer to be developed into OpenZFS. It was not until 2021, in OpenZFS 2.1 when dRAID became part of filesystem. And now, dRAID is finally in the TrueNAS® SCALE offering.

Knowing RAID resilvering

RAID rebuilding or reconstruction is a painful and potentially risky process. In OpenZFS and ZFS speak, this process is called resilvering. In simple laymen terms, when a drive (or drives) failed in a parity-based RAID volume (eg. RAID-Z1 or RAID-Z2 vdev), the data which was previously in the failed drive is recreated in the newly integrated spare drive. The structural integrity of the RAID volume (and the storage pool) is preserved but the data that was lost is painstakingly remade through the mathematical algorithm of the parity function of the RAID volume.

When hard disk drives were small in capacity like 2TB or less, the RAID resilvering process was probably faster to complete, returning the parity RAID volume to a normal, online state. But today, drives are 22TB and higher, leaving the traditional RAID resilvering process to take days and even weeks. This leads the RAID volume vulnerable to another possible drive failure, weakening the integrity of the RAID volume. Even worse, most of modern day storage arrays have many disk drives, into the thousands even. And yes, solid state drives would probably be faster in the resilvering, but the same mechanics pretty much apply in OpenZFS.

At the same time, the spare drives are assigned physically and designated to the OpenZFS storage pool, and are not part of the vdev until the resilvering process kicks in.

Yes, this is pretty much a physical process that takes time, computing resources and patience. Note the operative word of “physical” here.

dRAID resilvering

dRAID speeds up the RAID resilvering process several folds, returning the RAID volume (or vdev) much faster than traditional OpenZFS RAID resilvering process. It uses a logical (as opposed to physical) RAID layout concept and uses “logical spare drives”. Thus, there will be many spares “blocks” distributed across the entire dRAID zpool, as shown in the diagram below.

Traditional RAID vdev vs dRAID vdev

Continue reading

Memory cloud reality soon?

The original SAN was not always Storage Area Network. SAN had a twin nomenclature called System Area Network (SAN) back in the late 90s. Fibre Channel fabric topology (THE Storage Area Network) was only starting to take off when many of the Fibre Channel topologies at the time were either FC-AL (Fibre Channel Arbitrated Loop) or Point-to-Point. So, for a while SAN was System Area Network, or at least that was what Microsoft® wanted it to be. That SAN obviously did not take off.

System Area Network (architecture shown below) presented a high speed network where server clusters can communicate. The communication protocol of choice was VIA (Virtual Interface Adapter), and the proposed applications, notably the Microsoft® SQL Server, would use Winsock API to interface with the network services. Cache coherency in the combined memory resources of a clustered network is often the technology to ensure data synchronization, consistency and integrity.

Alas, System Area Network did not truly take off, and now it is pretty much deprecated from the Microsoft® universe.

System Area Network (SAN)

Continue reading

Is Software Defined right for Storage?

George Herbert Leigh Mallory, mountaineer extraordinaire, was once asked “Why did you want to climb Mount Everest?“, in which he replied “Because it’s there“. That retort demonstrated the indomitable human spirit and probably exemplified best the relationship between the human being’s desire to conquer the physical limits of nature. The software of humanity versus the hardware of the planet Earth.

Juxtaposing, similarities can be said between software and hardware in computer systems, in storage technology per se. In it, there are a few schools of thoughts when it comes to delivering storage services with the notable ones being the storage appliance model and the software-defined storage model.

There are arguments, of course. Some are genuinely partisan but many a times, these arguments come in the form of the flavour of the moment. I have experienced in my past companies touting the storage appliance model very strongly in the beginning, and only to be switching to a “software company” chorus years after that. That was what I meant about the “flavour of the moment”.

Software Defined Storage

Continue reading

Do we still need FAST (and its cohorts)?

In a recent conversation with an iXsystems™ reseller in Hong Kong, the topic of Storage Tiering was brought up. We went about our banter and I brought up the inter-array tiering and the intra-array tiering piece.

After that conversation, I started thinking a lot about intra-array tiering, where data blocks within the storage array were moved between fast and slow storage media. The general policy was simple. Find all the least frequently access blocks and move them from a fast tier like the SSD tier, to a slower tier like the spinning drives with different RPM speeds. And then promote the data blocks to the faster media when accessed frequently. Of course, there were other variables in the mix besides storage media and speeds.

My mind raced back 10 years or more to my first encounter with Compellent and 3PAR. Both were still independent companies then, and I had my first taste of intra-array tiering

The original Compellent and 3PAR logos

I couldn’t recall which encounter I had first, but I remembered the time of both events were close. I was at Impact Business Solutions in their office listening to their Compellent pitch. The Kuching boys (thank you Chyr and Winston!) were very passionate in evangelizing the Compellent Data Progression technology.

At about the same time, I was invited by PTC Singapore GM at the time, Ken Chua to grace their new Malaysian office and listen to their latest storage vendor partnership, 3PAR. I have known Ken through my NetApp® days, and he linked me up Nathan Boeger, 3PAR’s pre-sales consultant. 3PAR had their Adaptive Optimization (AO) disk tiering and Dynamic Optimization (DO) technology.

Continue reading

OpenZFS 2.0 exciting new future

The OpenZFS (virtual) Developer Summit ended over a weekend ago. I stayed up a bit (not much) to listen to some of the talks because it started midnight my time, and ran till 5am on the first day, and 2am on the second day. Like a giddy schoolboy, I was excited, not because I am working for iXsystems™ now, but I have been a fan and a follower of the ZFS file system for a long time.

History wise, ZFS was conceived at Sun Microsystems in 2005. I started working on ZFS reselling Nexenta in 2009 (my first venture into business with my company nextIQ) after I was professionally released by EMC early that year. I bought a Sun X4150 from one of Sun’s distributors, and started creating a lab server. I didn’t like the workings of NexentaStor (and NexentaCore) very much, and it was priced at 8TB per increment. Later, I started my second company with a partner and it was him who showed me the elegance and beauty of ZFS through the command lines. The creed of ZFS as a volume and a file system at the same time with the CLI had an effect on me. I was in love.

OpenZFS Developer Summit 2020 Logo

OpenZFS Developer Summit 2020 Logo

Exciting developments

Among the many talks shared in the OpenZFS Developer Summit 2020 , there were a few ideas and developments which were exciting to me. Here are 3 which I liked and I provide some commentary about them.

  • Block Reference Table
  • dRAID (declustered RAID)
  • Persistent L2ARC

Continue reading

FreeNAS 11.2 & 11.3 eBook

[ Full disclosure: I work for iXsystems™ Inc. This eBook was 3/4 completed when I joined on July 1, 2020 ]

I am releasing my FreeNAS™ eBook today. It was completed about 4 weeks ago, but I wanted the release date to be significant which is August 31, 2020.

FreeNAS logo

Why August 31st? Because today is Malaysia’s Independence Day.

Why the book?

I am an avid book collector. To be specific, IT and storage technology related books. Since I started working on FreeNAS™ several years ago, I wanted to find a book to learn. But the FreeNAS™ books in the market are based on an old version of FreeNAS™. And the FreeNAS™ documentation is a User Guide where it explains every feature without going deeper with integration of real life networking services, and situational applications such as SMB or NFS client configuration.

Since I have been doing significant amount of feature “testings” of FreeNAS™ from version 9.10 till the present version 11,3 on Virtualbox™, I have decided to fill that gap. I have decided to write a cookbook-style FreeNAS™ on Virtualbox™ that covers most of the real-life integration work with various requirements including Active Directory, cloud integration and so on. All for extending beyond the FreeNAS™ documentation.

Continue reading

Intel is still a formidable force

It is easy to kick someone who is down. Bad news have stronger ripple effects than the good ones. Intel® is going through a rough patch, and perhaps the worst one so far. They delayed their 7nm manufacturing process, one which could have given Intel® the breathing room in the CPU war with rival AMD. And this delay has been pushed back to 2021, possibly 2022.

Intel Apple Collaboration and Partnership started in 2005

Their association with Apple® is coming to an end after 15 years, and more security flaws surfaced after the Spectre and Meltdown debacle. Extremetech probably said it best (or worst) last month:

If we look deeper (and I am sure you have), all these negative news were related to their processors. Intel® is much, much more than that.

Their Optane™ storage prowess

I have years of association with the folks at Intel® here in Malaysia dating back 20 years. And I hardly see Intel® beating it own drums when it comes to storage technologies but they are beginning to. The Optane™ revolution in storage, has been a game changer. Optane™ enables the implementation of persistent memory or storage class memory, a performance tier that sits between DRAM and the SSD. The speed and more notable the latency of Optane™ are several times faster than the Enterprise SSDs.

Intel pyramid of tiers of storage medium

If you want to know more about Optane™’s latency and speed, here is a very geeky article from Intel®:

The list of storage vendors who have embedded Intel® Optane™ into their gears is long. Vast Data, StorOne™, NetApp® MAX Data, Pure Storage® DirectMemory Modules, HPE 3PAR and Nimble Storage, Dell Technologies PowerMax, PowerScale, PowerScale and many more, cement Intel® storage prowess with Optane™.

3D Xpoint, the Phase Change Memory technology behind Optane™ was from the joint venture between Intel® and Micron®. That partnership was dissolved in 2019, but it has not diminished the momentum of next generation Optane™. Alder Stream and Barlow Pass are going to be Gen-2 SSD and Persistent Memory DC DIMM respectively. A screenshot of the Optane™ roadmap appeared in Blocks & Files last week.

Intel next generation Optane roadmap

Continue reading

Open Source and Open Standards open the Future

[Disclosure: I was invited by GestaltIT as a delegate to their Storage Field Day 19 event from Jan 22-24, 2020 in the Silicon Valley USA. My expenses, travel, accommodation and conference fees were covered by GestaltIT, the organizer and I was not obligated to blog or promote the vendors’ technologies to be presented at this event. The content of this blog is of my own opinions and views]

Western Digital dived into Storage Field Day 19 in full force as they did in Storage Field Day 18. A series of high impact presentations, each curated for the diverse requirements of the audience. Several open source initiatives were shared, all open standards to address present inefficiencies and designed and developed for a greater future.

Zoned Storage

One of the initiatives is to increase the efficiencies around SMR and SSD zoning capabilities and removing the complexities and overlaps of both mediums. This is the Zoned Storage initiatives a technical working proposal to the existing NVMe standards. The resulting outcome will give applications in the user space more control on the placement of data blocks on zone aware devices and zoned SSDs, collectively as Zoned Block Device (ZBD). The implementation in the Linux user and kernel space is shown below:

Continue reading