Praying to the hypervisor God

I was reading a great article by Frank Denneman about storage intelligence moving up the stack. It was pretty much in line with what I have been observing in the past 18 months or so, about the storage pendulum having swung back to DAS (direct attached storage). To be more precise, the DAS form factor I am referring to are physical server hardware that houses many disk drives.

Like it or not, the hypervisor has become the center of the universe in the IT space. VMware has become the indomitable force in the hypervisor technology, with Microsoft Hyper-V playing catch-up. The seismic shift of these 2 hypervisor technologies are leading storage vendors to place them on to the altar and revering them as deities. The others, with the likes of Xen and KVM, and to lesser extent Solaris Containers aren’t really worth mentioning.

This shift, as the pendulum swings from networked storage back to internal “direct-attached” storage are dictated by 4 main technology factors:

  • The x86 server architecture
  • Software-defined
  • Scale-out architecture
  • Flash-based storage technology

Anyone remember Thumper? Not the Disney character from the Bambi movie!

thumper-bambi-cartoon-character

When the SunFire X4500 (aka Thumper) was first released in (intermission: checking Wiki for the right year) in 2006, I felt that significant wound inflicted in the networked storage industry. Instead of the usual 4-8 hard disk drives in the all the industry servers at the time, the X4500 4U chassis housed 48 hard disk drives. The design and architecture were so astounding to me, I even went and bought a 1U SunFire X4150 for my personal server collection. Such was my adoration for Sun’s technology at the time.

Continue reading

Technology prowess of Riverbed SteelFusion

The Riverbed SteelFusion (aka Granite) impressed me the moment it was introduced to me 2 years ago. I remembered that genius light bulb moment well, in December 2012 to be exact, and it had left its mark on me. Like I said last week in my previous blog, the SteelFusion technology is unique in the industry so far and has differentiated itself from its WAN optimization competitors.

To further understand the ability of Riverbed SteelFusion, a deeper inspection of the technology is essential. I am fortunate to be given the opportunity to learn more about SteelFusion’s technology and here I am, sharing what I have learned.

What does the technology of SteelFusion do?

Riverbed SteelFusion takes SAN volumes from supported storage vendors in the central datacenter and projects the storage volumes (aka LUNs)to applications and hosts at the remote branches. The technology requires a paired relationship between SteelFusion Core (in the centralized datacenter) and SteelFusion Edge (at the branch). Both SteelFusion Core and Edge are fronted respectively by the Riverbed SteelHead WAN optimization device, to deliver the performance required.

The diagram below gives an overview of how the entire SteelFusion network architecture is like:

Riverbed SteelFusion Overall Solution 2 Continue reading

Convergence data strategy should not forget the branches

The word “CONVERGENCE” is boiling over as the IT industry goes gaga over darlings like Simplivity and Nutanix, and the hyper-convergence market. Yet, if we take a step back and remove our emotional attachment from the frenzy, we realize that the application and implementation of hyper-convergence technologies forgot one crucial elementThe other people and the other offices!

ROBOs (remote offices branch offices) are part of the organization, and often they are given the shorter end of the straw. ROBOs are like the family’s black sheeps. You know they are there but there is little mention of them most of the time.

Of course, through the decades, there are efforts to consolidate the organization’s circle to include ROBOs but somehow, technology was lacking. FTP used to be a popular but crude technology that binds the branch offices and the headquarter’s operations and data services. FTP is still used today, in countries where network bandwidth costs a premium. Data cloud services are beginning to appear of part of the organization’s outreaching strategy to include ROBOs but the fear of security weaknesses, data breaches and misuses is always there. Often, concerns of the weaknesses of the cloud overcome whatever bold strategies concocted and designed.

For those organizations in between, WAN acceleration/optimization techonolgy is another option. Companies like Riverbed, Silverpeak, F5 and Ipanema have addressed the ROBOs data strategy market well several years ago, but the demand for greater data consolidation and centralization, tighter and more effective data management and data control to meet the data compliance and data governance requirements, has grown much more sophisticated and advanced. Continue reading

Has Object Storage become the everything store?

I picked up a copy of latest Brad Stone’s book, “The Everything Store: Jeff Bezos and the Age of Amazon at the airport on my way to Beijing last Saturday. I have been reading it my whole time I have been in Beijing, reading in awe about the turbulent ups and downs of Amazon.com.

The Everything Store cover

In its own serendipitous ways, Object-based Storage Devices (OSDs) have been floating in my universe in the past few weeks. Seems like OSDs have been getting a lot of coverage lately and suddenly, while in the shower, I just had an epiphany!

Are storage vendors now positioning Object-based Storage Devices (OSDs) as Everything Store?

Continue reading

Novell Filr Technology Overview – Part 2

Part 1 of the Novell Filr Technology Overview was too heavy and I had to break up to share the feature of storage.

How will storage space look like to the different access methods or mobile device? Novell Filr does not deviate from the comfortable interface that is functionally similar to applications such as Dropbox. Under the guise of folders and files, the interface is a familiar one. It is called “MY FILES”.

But under the wraps of “MY FILES”, Novell Filr consolidates both Personal Storage and Net Folders locations under one roof. Here’s a look at “MY FILES” and how it consolidates various underlying file storage structure:

Continue reading

Novell Filr Technology Overview Part 1

I am like a kid opening presents on Christmas mornings today.

Reading and understanding the Novell Filr architecture is exciting with each feature revealing something different, some that may not be entirely unique, but something done simplified. Novell Filr has simplified a few things that are much more appreciated from storage guys like me. Let me share with you this technology learning session.

2 Key Features

First of all, I see the Novell Filr as a Secure Access Broker.

The Novell Filr provides file access, file sharing and file synchronization with multiple mobile devices. The mobility revolution in the likes of smart phones, tablets and other “connected” devices in our personal lives are changing our habits in the way we want information to be accessed, which I can summarize in 2 words – SIMPLE, UNINHIBITED. It is the lack of inhibition that scares the hell out of IT because IT is losing control, and corporations fear data leaks.

Novell Filr lets users access their home directories and network folders from their mobile devices. It lets the users synchronize their files with Windows and MacOS computers, regardless if these devices are internal of the company’s firewalled networks or external of it. Here’s a simple diagram of how Novell Filr defines its position as a Secure Access Broker.

Continue reading

Storage Facebook likes

There is a mini revolution going on, and Facebook is the main force driving it.

It is the Open Compute Project (OCP), and its mission is to redesign the modern-day data centers and drive open hardware and architectural designs and specifications, including storage. The overall goals are to drive greater data center efficiency, flexibility, energy savings and cost effectiveness in a new class of “hyperscale” datacenters. Facebook, Google and Amazon are some of the examples of hyperscale datacenters, where their businesses relies on massive computing power, exponential storage performance and racks and racks of computing infrastructure to drive their web-computing or cloud-computing services.

Some of the cool technology innovations in mind includes having systems that support any CPUs from any vendors including Intel and AMD. We may even see both processor brands running on the same motherboard. The Open Common Slots component for processors is based on PCIe. Intel has pledged their Decathlete motherboard specifications for OCP and likewise AMD has produced its Roadrunner mobo series specification for the project as well. The ARM processor could also be supported in the near future in this “mix-and-match” OCP ideals.

Other proposed changes include OpenRack specifications, “sleds”, and of course, the Open Vault project for storage (aka “Knox”). Continue reading

Can VSA help NetApp?

Almost a year ago, I had an interview with VMware Malaysia for a Senior SE position. They wanted a pre-sales guy who knows Oil & Gas and a strong technology background. I had a strong storage background, and I was involved in Oil & Gas upstream since my NetApp and EMC days.

I thought I was their guy having being led to believe (mostly by my own self-belief) to be so. I didn’t get the job but I did not find out the reason why I lost the opportunity. But I remembered well that I brashly mentioned to the Australian interviewer over the phone that VMware could become the next “storage technology” company. At that time, VMware just launched their VMware 5.0 and along with it, their vSphere Storage Appliance (VSA). This was a turning point of the virtual storage appliance space.

My friend, whose company is a VMware partner, said that the list price for the vSphere VSA was USD5,000.00 a pop. The price wasn’t too bad to the small-medium-enterprise businesses in Malaysia, minus the hardware and storage capacity cost. But what intrigued me back then was this virtual storage appliance concept was disruptive.

VMware could potentially take large JBOD farms, each for the minimum of 3 physical ESXi nodes and build a shared storage using the vSphere Storage Appliance (VSA). Who needs shared iSCSI or Fibre Channel LUNs anymore if VMware had its way?

But VMware still pretty much depended on their storage partners, especially its master, EMC and so I believe VMware held back pushing VSA for the reason of allowing its storage partner ecosystem to thrive. And for that reason, the vSphere Storage API such as VAAI and VASA were developed since vSphere 4 to enhance the deeper integration of these storage vendor’s technology into the VMware world.

But of course, long before the VMware’s VSA venture, HP LeftHand already had one on the cards. The LeftHand Virtual SAN Appliance (also VSA) was already getting rave comments from their partners and customers, impressed with how they were able to showcase HP LeftHand storage solution and technology brilliantly. Eventually, HP recognized the prowess of the LeftHand VSA and started marketing it as HP StoreVirtual VSA. I don’t hear much about the HP LeftHand (since has been renamed as P4000) VSA nowadays, seeing the HP guys in Malaysia preferring to pitch the physical storage than the virtual storage software.

NetApp, back in Q1 of 2012, also decided to go down the path of virtual storage appliance, announcing the ONTAP-v to the world here. It was initially resold through the Fujitsu partnership, but the Q1 announcement expands the ONTAP-v to a larger set of server vendors as shown below. The key component is to have a qualified RAID controller in each of the server vendors.

Continue reading

The marriage in the cloud

Admit it! You are a terabyte junkie! I am sure many of us have one terabyte or more of your personal “stuff” at home. Heck, I even heard from a friend that he has almost 20TB of high definition movies (thank you Torrent!) at home! That’s crazy!

And what the typical Malaysian consumer would do after he or she runs out of hard disk space? In KL (our beloved capital city, Kuala Lumpur), they would throng the Low Yat IT mall or extensions of it, like Digital Mall in PJ Section 14. In other towns and cities in Malaysia, PC fairs are popular, as consumers try to get the best price possible (We Malaysian are good at squeezing the max of a deal)

It is difficult for the not-so-IT-literate consumer to differentiate which brand is the best. Buffalo, Iomega, DLink, Western Digital, etc, etc. But the tides are changing, because these vendors want to tie you down for the rest of your digital life. You see, buying a small NAS for the home now comes with a big carrot, an incentive to keep you wanting for more, and yet you can’t unbind yourself from the tether once you are hooked.

Cloud storage hasn’t taken off in a big way last year. But many cloud storage vendors know there are plenty of opportunities out there but how do they get the consumers to upload their files, photos and whatever stuff they might have, to cloud storage? Ingeniously, they work together with other smaller NAS storage players and use these vendor’s product offerings as baits. They bundle a significantly large FREE capacity or data protection offering in the Cloud Storage as the carrot, and once the consumer decides to put their files in the cloud storage, boom, they are ensnared to become a long term ATM machine to the Cloud Storage Provider.

Sneaky? No? I call this good, smart marketing. You have a market of opportunities out there, but cloud storage isn’t catching on. You have small NAS vendors that is reaching out to the market of consumer, but it’s a brutal, competitive arena and margins are razor thin. It’s a win-win situation for both sides.

And this trend is catching on. When I first read about Drobo (a high-end consumer NAS storage) partnering Carbonite (a remote backup vendor now repackaged as a Cloud storage backup provider), I thought it was a pretty darn good idea. It was a marriage that happened in the cloud. Late last year, another consumer NAS company, QNAP paired up with Symform, a cloud storage and backup vendor.

This was moving towards a market that scratches the itch. The consumers wanted reliable backup too, but consumer-grade disk drives fail ever so often. Laptops get stolen, and files could be infected by viruses. The list goes on, but the point is that the Cloud Storage Providers may have found a silver lining in getting the consumers to leap into the cloud. And the whole idea of small NAS vendor-big Cloud Backup dynamic duo, just got a big endorsement last night. Guess who has decided to dip its grubby hands into the pie?

EMC, the 800-pound gorilla of the information and storage world, through its Iomega subsidiary, wants your money! They had just married Iomega with EMC Atmos. It was quoted:

“EMC subsidiary and data protection specialist Iomega announced the integration between Iomega network storage solutions and EMC Atmos, extending Atmos cloud-based data protection and sharing to Iomega’s network storage product offerings. The new integration gives small and midsize businesses (SMBs), remote offices and distributed enterprises access to any Atmos powered cloud around the world.”

Surprised? Not really, but I guess EMC needs to breath new life into Atmos and this marriage just extended Atmos’ life support system.

We raid vRAID

I took a bit of time off to read through Violin’s vRAID technology because I realized that vRAID (other than Violin’s vXM architecture) is the other most important technology that differentiates Violin Memory from the other upstarts. I blogged at a high-level about Violin a few entries ago, and we are continuing Violin impressive entrance with a storage technology that have been around for almost 25 years – RAID. Incidentally, I found this picture of the original RAID paper (see below):

Has RAID evolved with solid state storage? Evidently, no, because I have not read of any vendors (so far) touting any RAID revolution in their solid state offerings. There has been a lot of negative talks about RAID, but RAID has been the cornerstone and the foundation of storage ever since the beginning. But with the onslaughts of very large capacity HDDs, the demands of packing more bits-per-inch and the insatiable needs for reliability, RAID is slowly beginning to show its age. Cracks in the armour, I would say. And there are many newer, slightly more refined versions of RAID, from the Network RAID-style of HP P4000 or the Dell EqualLogic, to the RAID-X of IBM XIV, to innovations of declustered RAID in Panasas. (Interestingly, one of the early founders of the actual RAID concept paper, Garth Gibson, is the founder of Panasas).

And the new vRAID from Violin-System doesn’t sway much from the good ol’ RAID, but it has been adapted to address the issues of Solid State Devices.

Solid State devices (notably NAND Flash since everyone is using them) are very different from the usual spinning disks of HDDs. They behave differently and pairing solid state devices with the present implementations of RAID could be like mixing oil and water. I am not saying that the present RAID cannot work with solid state devices, but has RAID adapted to the idiosyncrasies of Flash?

It is like putting an old crank shaft into a new car. It might work for a while, but in the long run, it could damage the car. Similarly, conventional RAID might have detrimental performance and availability impact with solid state devices. And we have hardly seen storage vendors coming up to say that their RAID technology has been adapted to the solid state devices that they are selling. This silence could likely mean that they are just adapting to market requirements and not changing their RAID codes very much to take advantage of Flash or other solid state storage for that matter. Violin Memory has boldly come forward to meet that requirement and vRAID is their answer.

Violin argues that there are bottlenecks at the external RAID controller or software RAID level as well as use of legacy disk drive interfaces. And this is indeed true, because this very common RAID implementation squeezes performance at the expense of the other components such as CPU cycles.

Furthermore, there are plenty of idiosyncrasies in Flash with things such as erase-first, then write mechanism. The nature of NAND Flash, unlike DRAM, requires a block to be erased first before a write to the block is allowed. It does not “modify” per se, where the operations of read-modify-write is often applied in parity-based RAIDs of 5 and 6. Because of this nature, it is more like read-erase-write, and when the erase of the block is occurring, the read operation is stalled. That is why most SSDs will have impressive read latency (in microseconds), but very poor writes (in milliseconds). Furthermore, the parity-based RAID’s write penalty, can further aggravate the situation when the typical RAID technology is applied to NAND Flash solid state storage.

As the blocks in the NAND Flash build up, the accumulation of read-erase-write will not only reduce the lifespan of the blocks in the NAND Flash, it will also reduce the IOPS to a state we called Normalized Steady State. I wrote about this in my blog, “Not all SSDs are the same” some moons ago. In my blog, SNIA Solid State Storage Performance Testing Suite (SSS-PTS), there were 3 distinct phases of a typical NAND Flash SSD:

  • Fresh of out the Box (FOB)
  • Transition
  • Steady State
This performance degradation is part of what vendors call “Write Cliff”, where there is a sudden drop in IOPS performance as the NAND Flash SSD ages. Here’s a graph that shows the performance drop.
Violin’s vRAID, implemented within its switched vXM architecture itself, and using proprietary high performance flash controllers and the flash-optimized vRAID technology, is able deliver sustained IOPS throughout the lifespan of the flash SSD, as shown below:
To understand vRAID we have to understand the building blocks of the Violin storage array. NAND Flash chips of 4GB are packed into a Flash Package of 8 giving it 32GB. And 16 of these 32GB Flash Package are then consolidated into a 512GB VIMM (Violin Inline Memory Module). The VIMM is the starting block and can be considered as a “disk”, since we are used to the concept of “disk” in the storage networking world. 5 of these VIMMs will create a RAID group of 4+1 (four data and one parity), giving the redundancy, performance and capacity similar to RAID-5.
The block size used is 4K block and this 4K block is striped across the RAID group with 1K pages each on each of the VIMMs in the RAID group. Each of this 1K page is managed independently and can be placed anywhere in any flash block in the VIMMs, and spread out for lowest possible latency and bandwidth. This contributes to the “spike free latency” of Violin Memory. Additionally, there is ECC protection within each 1K page to correct flash bit error.
To protect against metadata corruption, there is an additional, built-in RAID Check bit to correct the VIMM errors. Lastly, one important feature that addresses the read-erase-write weakness of NAND Flash, the vRAID ensures that the slow erases never block a Read or a Write. This architectural feature enable spike-free latency in mixed Read/Write environments.
Here’s a quick overview of Violin’s vRAID architecture:
I still feel that we need a radical move away from the traditional RAID and vRAID is moving in the right direction to evolve RAID to meet the demands of the data storage market. Revolutionary and radical it may not be, but then again, is the market ready for anything else?
As I said, so far Violin is the only all-Flash vendor that has boldly come forward to meet the storage latency problem head-on, and they have been winning customers very quickly. Well done!